PowerBuilder Foundation Class
Library User’s Guide

PowerBuilder®

9

DOCUMENT ID: 37779-01-0900-01
LAST REVISED: March 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein isfurnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated inany form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup
Server, BizTracker, ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench,
DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Devel opers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP,
ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect,
InternetBuilder, i Script, Jaguar CTS, jConnect for JIDBC, MainframeConnect, Maintenance Express, MDI Access Server, MDI Database
Gateway, media.splash, MetaWorks, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerJ, Power Script, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips,
Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, Power\Ware Enterprise, ProcessAnalyst, Rapport, Report Workbench,
Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Resource
Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL
Edit/ TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.F.T. Message Format Libraries,
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10,
System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite.NET,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK RuntimeKit for UniCode, Viewer, Visual Components, Visual Speller, Visua Writer,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK S, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 11/02

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book..........

PART 1

CHAPTER 1

PART 2

CHAPTER 2

PART 3

CHAPTER 3

PFC Library User’s Guide

... iX
PFC OVERVIEW
About the PowerBuilder Foundation Class Library.......c............. 3
Understanding PFC........oooiiiiiiiiiiee ettt a e aa e 3
Understanding POWErBUIIAETcoceeviiiiiiiiiiiee e 4
PowerBuilder libraries and objectsccccvvvvvieeeiiicciiiineeen, 4
Object-oriented programming..........ccocccuvrereeeeesiiiinrereeeeeeenrennes 7
How PFC uses object orientation...........ccccccceeeiiicciiieniie e, 8
How PFC uses the extension level...........cccocoeeiiiiiiiiiniieees 11
The PFC COMPONENLSuvviiiiiieii ittt a e 15
PFC CLASS LIBRARY DESIGN
Designing a Class Librarycccccccceeii i 19
Using PFC to design a class librarycccccceeiiiiciiiniii e, 19
Choosing an extension Strategyccccceevvevcuireeeeeeeisiiiiiiee e e e e e 20
Creating an intermediate extension levelcccccccoovevvnneen. 20
Using the existing PFC extension level...........cccccccvveee i, 23
DefiNiNg @ NEW SEIVICE ...cccooiiiiiiiiiiiiie st 24
PFC PROGRAMMING
PFC Programming BaSiCScuuuvievieiiiiiiiiiiiieieeeee e 29
Setting up the application manager...........cccccceeeviiciiiieeiee e, 29
Building applicationscocciiiiiiieee i 33
Using attribute ODJECES........cccoviiiiiiiiee e 38
USING PFC CONSLANES ...eevviiiiiiiiiiiiiiiee it 40
THe MESSAJE FOULET ...ceeiiiiiiiiiie et 41

Contents

CHAPTER 4

Transaction management with PFC............occoviiiiiiiiie s 43
Calling ancestor functions and eventsccccccvvviiiieeiieeniiniinnnen, 45
Adding online Help to an application...........ccoccvvvvveeiiiiniiiiiieeneeenn, 46
Installing PFC UPgrades..........uuuvieeeiiiiiiiiiiiee e eeciireee e a7
USING PFC SEIVICES ..ottt e e e 49
APPLICALION SEIVICES ...vvviiiiiiciiiiiiiie et 49
DataWindow caching ServiCeccccccvveeeiiiciviieeeee e 50
DebUQQING SEIVICE......ccivvieiie e ettt a e 52
Application preference ServiCeccccccvvvivvieeeeeeeiiiciieeeeeeen 52
Most recently used 0bject SEIVICEccovvcvivieiieeeiiiiiiiiieeen, 54
Error MesSSage SEIVICEuuuiiiieiiiiiiiiiiiie et 57
SECUIMLY SEIVICE ...uieviiiiiii ittt 60
Transaction registration SErViCecccvveevieeviiiiiiieeeee s 62
DataWIiNOOW SEIVICES........vviiireieeiiieie et e st e e s e 63
DataWindow Services anCeStorcccurvreeerireeeerireeen e 64
Drop-down DataWindow search serviceccccccevvvvivvvnenn. 67
FIltEr SEIVICE ... ittt 67
Find and replace SEIVICEccccevviiiiiieie e 70
LiNKAQgE SEIVICE ...vviiiieiiiiiiiiie ettt 71
Multitable update SErVICE........ccccoevivviiiieee e 74
Print PrevVieW SEIVICEuuviviieee et e e eniiaee e 75
DataWindow properties SErViCe........ccuueveeeeiiicviveereeeesieirivneens 76
QUETY MOAE SEIVICE ..vvvveeiiiiiiiiiiie ettt 77
REPOIING SEIVICE ..coiiiiiiiiiiiiiee ettt 78
Required COIUMN SEIVICEccviiiiiiiiiiiiiie e 81
ROW Management SEIVICEcoviuuviiiieeeeeiiiiiiieee e 82
ROW SEIeCtioN SEIVICE........uvviiiiieie i 84
DataWindow reSiZe SEIVICEcvevveririeeerrieee e 85
SOM SEIVICE .oiiieiiiiiiieie ettt et e e e e r e e e e s s e s raee s 87
WINAOW SEIVICESvvvviiiiie ettt e ettt e e st r e e e e e ranaeaae s 89
BasiC WINAOW SEIVICESuuvieeeiiiiiiiiiiie e iciiieee e e 90
Preference SEIVICEocvvveiiee et 93
Sheet management SEIVICE.........ccocvvvveeeee e 94
StatuS Dar SEIVICE......uviiiiiiiiiiiie e 94
MENU SEIVICEeeiiiiiiiee ettt e e ee e 95
RESIZE SEIVICEeiiiiiieie ettt 96
CONVEISION SEIVICEuveieiirieeiiieee ettt et e st e e 98
Date/TiMeE SEIVICEoveeiiiiieieiiee et 99
FIlE SEIVICE ...eiiiiiie e 101
INTfil@ SEIVICE....ciiiiiiiieie e 102
NUMETICAl SEIVICE ...ttt 103
PIatform SEIVICE ..ccoiiiiiiiee ettt 105
SeIECHON SEIVICE ..eiiiiiiiiiiiiie ettt e e a e e e aeanes 106

PowerBuilder

Contents

SQL Parsing SEIVICEccuuiiieeeiiiiiiieitee e e s esiiaerrea e e s e ssiianeaeaaeeaanes 108
String-handling SEIVICE.........ccoiiiiiiiiiiee e 109
MELACIASS SEIVICE......eeiiiiiiiieiiiiii et 111
Logical unit of WOrk SErviCeceevveiiiiiiiiiiieiecee e 111
Implementing self-updating objects...........cccccccceiiiiiiinennnn, 112

LISt SEIVICE ..eiiieiiie ettt 114
USIiNG @ baSIC IStuveiiiiiiiiiiiiie e 114
USING @ STACK ... 118
USING @ QUEUE ...ttt sttt a e snbaeee s 120
USING @ EMEE coiieiiietiiee ettt e e e e e e s r e e e e e e e e 121
Creating a comparison 0bJecCt........cccccevvvvviieieie e 124
TIMING SEIVICE ..viiitiieee ettt e et e e e e e e e e e e e e s e nnaaraeeaaee s 126
CHAPTER 5 Using PFC Visual CoNtrolscocooviiiiiiiiiiieee e ciiieieeee e 129
About PFC visual CoNtrols............cccceoiiiiiiiiiiiee e 129
Using standard visual user objectscccccceeviiciiiiieee e, 130
Using basic functionalitycccccccoviiiiiiieii e 130
Using advanced functionality............ccccvvveeeiiiiniiiiiiienee s 135
Using custom visual User ODJECtS..........oovvviieeiiiiiiiiiiiieeee s 169
Using the calculator CONtrolcoooccvvvvieiiee s 169
Using the calendar CONtrol.........ccccccovviiiieiiee s 174
Using the splitbar Control...........ccccooviiiiiieniiieee s 182
Using the progress bar controlcccccceeviviiiiiiiiee i, 183
CHAPTER 6 Using PFC Windows and MENUSceevvvveveeeeiiiiiiiiineieeeeeeeenns 191
USIiNG PFC WINAOWSuvviieiiiiiiiiiice et a e 191
Window usage basiCs........cccceeeeviiiiiiiieice e 192
Using response WIiNAOWS..........cevieeeiiiuviieereeeesininiineeseeesssnnnns 194
Using the pfC_Save ProCeSS......ccccvvviviiiiieeeeeicciiiieee e 195
Using Menus With PFC........oocciiiiiiiee e 201
Two menu inheritance strategiesccccvvvvvvveeeeiiiciinieeeenn, 202
Extending PFC MENUScuviiiiiieei e 202
Creating YoUr OWN MENUSocuvviieeieeeesiiitieeee e e s siinreeeeeae s 202
Using standard Menu iteMS..........oooviiviieieieeiniiiiiiiee e 204
USING POP-UP MENUS .eeeeiiiiiiriiiieeeeeesiiiirieeeeessssiirreeeeeeessninnes 206
CHAPTER 7 PFC ULHITIES oot 207
DataWindow Properties WiNAOWooccuviieeieeeiniiiiiiienee e 207
SOL SPY -ttt 210
SECUIMEY eetiieei ittt et e e e s s et e e e e e e s annee 213
Defining users and grouUPsccceeevieiviieereeeesiiiiiieeeeeeessnnens 215
Running the security SCanNer.........ccccccvvieeeeeeiiciiiieeee e 218

PFC Library User’s Guide \

Contents

CHAPTER 8

PART 4

LESSON 1

LESSON 2

LESSON 3

LESSON 4

Vi

Defining security for users and groups.........ccccceeevvvivvveeeenenn. 221
Implementing security in an applicationccccccoovcvvveenennn. 223
Maintaining the security database............cccoceeeiiiiiiiiiieennnnnn, 224
Library EXCENAEr.........vviieiii ettt e e 225
Migration ASSISTANT..........coiiiiiiiiiiiiee e 226
Deploying a PFC Application.......ccceeeeeiiiicciieiiieeeeeee e 227
Choosing a deployment Strategy.........cceveeeviicvrieeeeeeeeiiiiiiieeeeeeenn 227
USING PBR IlES ..ottt 229
Deploying database tables..........cccccccoeviiiiiiiee e 229
Deploying PFC dialog boxX HElpocvvveiiiiiiiiieiee e 230
PFC TUTORIAL
Generate a PFC Applicationueevvevieeiii i 233
Create a PFC applicationcccvviiiieee s ceiiieen e e 234
Modify the application managerccccvvvvveeeeeeiciiiiieee e 237
Redefine a global variable and review events...........cccccccoevuvvneenn. 241
Use the PFC Transaction Object Serviceccocvvvvvveeeeiiccvvnnnnn. 244
Create the Frame WINAOWeeuiiiiiiiaiiiniiiiieieieee e 247
Create a descendent frame WiNAOW............ccovvvieeinineeennnnee e, 248
Define pre- and post-0pen ProCesSIiNgeeeeeevvriiivieeeeeeriniiennen 250
Add script to open the frame WINAOWcccvvvveeeeiiniiiiiiieeeeen, 252
RUN the appliCation ... 253
Create MENUS ...t s 255
Create a desCendent MENU..........couveieririeeeiiieeee e 256
Add and modify ITEMS......ccuuviiiieii e 257
Create a frame MENUceeeii i a e 262
Associate the frame window with a menu..........ccccccoevvviiinennnnn. 264
Create a menu for the w_products sheet.........cccccoovcviviiiieeiiinns 265
Create a menu for the w_product_report sheetcccccveeeeeenes 267
Build the First Sheet Windowccccceeiiiiiiieiiiiee e 269
Add a library to the library list..........cccoocviiieiiii e, 270
Create a descendent WiNdOW...........c.ueevveeeeiiiiiiiieeeee e sciiiieee e 271
Add a DataWindow CONIOL...........ceeviiiiieiieie e 272
Enable DataWindOW SEIVICEScccceeiviiieeiiiriee e 275
PowerBuilder

Contents

RETIMNEVE TOWS ...t e e aa s 278
Run the appliCationcccooeciiiiiiie e 279
LESSON 5 Build the Second Sheet WindoWoocueeviiiiiiiiiiiiiieeeeeeeeeees 285
Create a descendent WiNAOW...........ccuuveeeiiiiiiiiiiiiiie e 286
Add a DataWindow CONtrol.............uuiieiiiiiiiiiiiiieee e, 287
Enable report and print preview ServiCesccouvvvvvvveeeeiiniivnnnn. 289
RUN the appliCation ..ot 291
1Yo =) TR 293

PFC Library User’s Guide Vii

viii PowerBuilder

About This Book

Subject

Audience

Other sources of
information

PFC Library User’s Guide

This book describes how to use the PowerBuilder Foundation Class
Library (PFC).

This book assumes that you:

Are comfortable using Microsoft Windows applications

Are currently developing applications with PowerBuilder and
understand the concepts and techni ques described in the Applications
Techniques book

Understand SQL and how to use your site-specific DBMS

This book has four parts, each for a specific group of PFC users:

Part | Title Audience
PFC Overview All PFC users
PFC Class Library Design | Object administrators
PFC Programming Application developers
PFC Tutorial All PFC users

Use the Sybase Technical Library CD and the Technical Library Product
Manuals web site to learn more about your product:

The Technical Library CD contains product manuals and is included
with your software. The DynaText reader (included on the Technical
Library CD) allows you to access technical information about your
product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your
documentation package for instructions on installing and starting the
Technical Library.

If you need help

e TheTechnical Library Product Manuals web siteisan HTML version of
the Technical Library CD that you can access using a standard web
browser. In addition to product manuals, you will find linksto
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

PowerBuilder

PART 1 PFC Overview

This part describes the PowerBuilder Foundation Class
Library and prerequisite PowerBuilder concepts.

This part is for all PFC users.

CHAPTER 1

About this chapter

Contents

About the PowerBuilder
Foundation Class Library

This chapter introduces the PowerBuilder Foundation Class Library
(PFC). It includes PFC basics, prerequisite PowerBuilder concepts,
object-oriented concepts, and alist of PFC components.

Topic Page
Understanding PFC 3
Understanding PowerBuilder 4
How PFC uses object orientation 8
How PFC uses the extension level 11
The PFC components 15

Understanding PFC

PowerBuilder objects

PFC Library User’s Guide

The PowerBuilder Foundation Class Library (PFC) is a set of
PowerBuilder objects that you customize and use to develop class
libraries. You can use these objects to provide corporate, departmental, or
application consistency. PFC also includes objects that you use asisfor
utility purposes, such as debugging.

PFC iswritten in PowerBuilder and delivered as PowerBuilder objects
with supporting PowerScript source code. It uses advanced PowerBuilder
object-oriented coding techniques, and features a service-oriented
design—that ensures that your application uses the minimum amount of
computer resources.

Read the code
PFC uses many advanced PowerBuilder coding techniques. You can use

the PowerBuilder PowerScript editor to examine the objects, instance
variables, events, and functions in PFC ancestor objects.

Understanding PowerBuilder

What this book
contains

For more information

This book explains PFC concepts (what things are and why you use them) as
well as usage information (how to program using PFC).

For detailed information on PFC objects, instance variables, events, and
functions, see the PFC Object Reference.

Understanding PowerBuilder

You use PFC to create advanced, object-oriented PowerBuilder classlibraries.
To get the most out of PFC and its object-oriented features, you must
understand PowerBuilder and its object-oriented features. Thissection givesan
overview of the PowerBuilder concepts with which you should be familiar.

Building PFC applications out of the box
PFCisdesigned primarily for building classlibraries. But nothing preventsyou

from using PFC asisto build applications.

For complete information on PowerBuilder concepts, see the Power Builder
User’s Guide.

PowerBuilder libraries and objects

PowerBuilder libraries

PowerBuilder objects

PFC isdelivered as a set of PowerBuilder libraries (PBLS). These libraries
contain the ancestor and descendent objects you use to write an application
with PFC.

Before you can use any PFC objects, you must add the PFC libraries to your
application’s library search path. PowerBuilder uses the library search path
(which you define in the Target properties sheet) to find referenced objects
during execution.

These are the main PowerBuilder objects you use with PFC:

PowerBuilder objects Purpose

Windows The interface between a user and a PowerBuilder
application

Menus Lists of commands that a user can select in the
currently active window

PowerBuilder

CHAPTER 1 About the PowerBuilder Foundation Class Library

PFC Library User’s Guide

PowerBuilder objects Purpose

Datawindow objects Used to retrieve, present, and manipulate data

User objects Reusable components that you define once and use
many times

There are two types of user objects:
e Visual user objects
e Class user objects

Visual user objects A visual user object isareusablevisual control or set of
visual controls with a predefined behavior. PFC includes two types of visual
user objects:

» Standard visual user objects PFC providesafull set of standard visual
user objects. Each PFC standard visual user object correspondsto a
PowerBuilder window control. These objects include predefined
behaviors that provide complete integration with PFC services. In
particular, the u_dw DatawWindow user object, offers extensive
functionality and integration with PFC services.

» Custom visual user objects PFC also use custom visual user objects.
Custom visual user objects contain a group of window controls. These
objects provide advanced functionality for use in specific situations.

PFC does not use external visual user objects. For complete information on
visual user objects, see the PowerBuilder User’s Guide.

Class user objects A class user object is areusable nonvisual control you
use to implement processing with no visual component. PFC includes two
types of class user objects:

« Standard class user objects Inherit their definitions from built-in
PowerBuilder system objects. PFC provides standard class user objectsfor
transaction, error, and all other extendabl e system objects.

« Custom class user objects Inherit their definitions from the
PowerBuilder NonVisual Object class. Custom class user objects
encapsul ate data and code. Thistype of class user object allows you to
define an object class from scratch.

PFC uses custom class user objects to implement many of its services and
provides functions to enable instances of these service objects.

It also providesreference variables, which are pointersto an instantiated
object. You use areference variable to access an object’s instance
variables, functions, and events.

Understanding PowerBuilder

Functions

Events and user
events

Functions and events
compared

PowerBuilder supports global functions and object functions. PFC performs
much of its processing through user-object functions. A function isacollection
of PowerScript statements that perform some processing. You pass zero or
more arguments to a function, and it may return avalue.

For complete information on PFC object functions, see the PFC Object
Reference.

Windows, user objects, and controls each have a predefined set of events. PFC
extends this by defining user events for many PFC objects. Events can accept
arguments and may return a value.

There are three types of PFC events:

This type of event Executes when the user performs

Predefined PowerBuilder | An action that causes the operating system to invoke the
events event

Predefined user event An action (such as selecting a menu item) that causes
PFC to trigger the user event

Empty user events (you | An action (such as selecting a menu item) that causes
add PowerScript code) PFC to trigger the user event

You can also add codeto call, trigger, or post predefined events and user events.

In this book
Unless otherwise qualified, this book uses the word event to refer to all three

types.

Functionsand eventsare similar in many ways: they may accept argumentsand
return values; they both consist of PowerScript statements; they can be called,
triggered, and posted. But there are some differences between functions and
events:

Feature Functions Events
Call to nonexistent Invoking a nonexistent Invoking a nonexistent event
method function at runtime produces | with TriggerEvent yields a
an error return value of -1
Processing of Functions override ancestor | Eventscan extend or override
ancestor script processing (although they ancestor processing
can call ancestor functions
using the Super keyword)

PowerBuilder

CHAPTER 1 About the PowerBuilder Foundation Class Library

Feature Functions Events

Access Object functions can be Events aways have public
public, private, or protected | access

Overloading Functions of the same name | Events cannot be overloaded
can take different arguments

Object-oriented programming

Inheritance

Encapsulation

Polymorphism

PFC Library User’s Guide

Object-oriented programming tools support three fundamental principles:
inheritance, encapsulation, and polymorphism.

Inheritance means that objects can be derived from existing objects, with
access to their visual component, data, and code. Inheritance saves coding
time, maximizes code reuse, and enhances consistency.

Encapsulation (also called information hiding) means that an object contains
itsown dataand code, allowing outside access as appropriate. PFC implements
encapsulation as follows:

« PFCdefinesobject functions and instance variables as public or protected,
depending on the desired degree of outside access. PFC does not use the
private access level.

« For readable instance variables, PFC generally provides an
of_Getvariablename function.

e For Boolean instance variables, PFC generally provides an
of Isvariablename function.

« For modifiable instance variables, PFC generally provides an
of_Setvariablename function.

* Incertain cases, PFC defines an instance variable as public, allowing you
to accessit directly.

Polymor phism means that functions with the same name behave differently
depending on the referenced object and the number of arguments. PFC
supports the following types of polymorphism:

How PFC uses object orientation

» With operational polymor phism, separate unrelated objects define a
function with the same name;
Both user objects contain an

of_GetParentWindow function
N

u_em / “ u_mle
of_GetParentWindow() of_GetParentWindow()

e With inclusional polymorphism, various objectsin an inheritance chain
define afunction with the same name but different arguments:

Overriding and PowerBuilder supports both function overriding or function overloading:
overloading

e Infunction overriding, the descendent function has the same arguments or
argument data types.

« Infunction overloading, the descendent function (or an identically named
function in the same object) has different arguments or argument data

types.
w_sort
of_sort()
PowerBuilder executes the
appropriate function, based
. ! /" onthe number of passed
Overrides w sort dw /1 parameters and their data
w_sort.of_sort [Ef_soﬁ() s W types
Overloads_——* of_sort(Integer)
w_sort.of_sort 1 of_sort(String)

How PFC uses object orientation
PFC uses all facets of PowerBuilder’s object-oriented capabilities.

Principles PFC uses the three principles of object orientation:;
PFC uses To
Inheritance Implement a hierarchy of windows, menus, and user objects

Encapsulation | Isolate each object’s data and code

Polymorphism | Provide same-named functions (within one object, within an
inheritance hierarchy, and among multiple objects)

8 PowerBuilder

CHAPTER 1 About the PowerBuilder Foundation Class Library

Services

PFC uses windows, standard class user objects, and custom class user objects

to implement an object-oriented design by isolating related types of processing
(such as Datawindow caching, row selection, and window resizing). These
related groups of processing are called services. Most services are
implemented as custom class user objects. PFC service typesinclude:

Service category

Service

Application services

Application preferences

Datawindow caching

Debug

Error message

Most recently used object

Security

Transaction registration

Window services

Base

Preferences

Sheet manager

Status bar

Datawindow services

Base

DatawWindow resize

Drop-down search

Filter

Find

Linkage

Multitable update

Properties

Querymode

Report

Required column

Resize

Row manager

Row selection

Sort

DataStore services

PFC Library User’s Guide

Base

Multitable update

Print preview

Report

How PFC uses object orientation

10

Service category

Service

Global services

File

INI file

Logical unit of work

MetaClass

Menu

Numerical

Platform

Resize

RTE find

Selection

SQL

SQL Spy

String

Enabling services selectively Selectively instantiating service objects
provides you with complete flexibility in the PFC functionality used by your
application—and allows your applications to use fewer resources. PFC
automatically destroys all service objects created by an application.

Enabling services selectively has many benefits, including:

* Minimizing the number of ancestor objects typically found in adeep

inheritance chain

* Minimizing application overhead (use only the services you need)

e Building both simple and complex applications

» Easeof use and maintenance (you do not have to write multiple scriptsto
override ancestor processing)

Delegation PFC’s service orientation reflects the object-oriented concept of
delegation, which divides the main object and itsimplementation into separate

object hierarchies.

PowerBuilder

CHAPTER 1 About the PowerBuilder Foundation Class Library

PFC uses two types of relationships for delegation:

Aggregate relationship The service object cannot function apart from
its owning object. Thisis sometimes called awhole-part relationship. For
example, the u_dw Datawindow visual user object usesthe
n_cst_dwsrv_querymode user object for query mode services:
Call the u_dw
of_SetQuerymode(TRUE)
function to enable query mode

services. Then call query mode
functions as needed

u_dw-based le n_cst_dwsrv_querymode
DataWindow control user object

Associative relationship The service object can function alone. For
example, string services are provided by the n_cst_string user object and
are available to objects throughout your application:

All objects in your
application can call
n_cst_string functions
w_emp_frame

w_emp_benefits # n_cststing

w_emp_all W

For more information on PFC service types and how to use them, see Chapter
4, “Using PFC Services'.

How PFC uses the extension level

No classlibrary can meet your needsright out of the box. You typically modify
PFC objects to integrate application-wide functions and objects. Without the
PFC extension level, this could present a problem whenever a new version of
PFC is released: applying the new version would overwrite your
customizations, forcing you to reapply these changes manually.

PFC Library User’s Guide

11

How PFC uses the extension level

A separate extension
level

12

PFC implements an extension level in al itsinheritance hierarchies. All
extension objects reside in separate PBLs, which are not affected when you
upgrade to the latest version:

Contents Ancestor level Extension level
Application and global services PFCAPSRV.PBL PFEAPSRV.PBL
DatawWindow services PFCDWSRV.PBL PFEDWSRV.PBL
Visual and standard class user PFCMAIN.PBL PFEMAIN.PBL
objects

Utility services PFCUTIL.PBL PFEUTIL.PBL
Window services PFCWNSRV.PBL PFEWNSRV.PBL

Objectsintheancestor-level libraries contain all instancevariabl es, events, and
functions; objectsin the extension-leve libraries are unmodified descendants
of corresponding objects in the ancestor library. But through inheritance they
have access to the ancestor’s instance variables, events, and functions.

To see the instance variables, events, and functions available to a descendent
object, use the PowerBuilder Browser.

Using an extension level has two major advantages:

* You can add site-, department-, and application-specific logic to extension
level objects

» Theextension PBLs are not affected when upgrading to the latest version

Obsolete objects
The PFCOLD.PBL library contains obsolete objects. If you have an existing

PFC application, you may need to add this library to your application target
library list.

PowerBuilder

CHAPTER 1 About the PowerBuilder Foundation Class Library

What you do

The PFC object-
naming convention

PFC Library User’s Guide

You customize your PFC application by modifying objects at the extension
level. You do not modify ancestor objects. Your application’s objects use
extension-level user objects and inherit from extension-level windows:

Key
Ancestor object
These objects are [opfc n st dwsrv |
inan Jancestor »pfo_n_cst_dwsrv Extension-level
PBL. Don't modify Descendant

them. n_cst_dwsrv
\d

AN S
pfc_n_cst_dwsrv_sort

These objects are in the
___— extension PBL. Modify
n_cst_dwsrv_sort < them if you need to.

PFC uses the following object-naming convention:

Level Name Contains

Ancestor objects | Use the prefix pfc_ All instance variables, events,
and functions

Extension-level | Have the sasme name astheir | Unmodified descendantsof PFC
objects ancestor but without the ancestor objects

prefix pfc_

For example, the ancestor for the DataWindow selection service object is
pfc_n_cst_dwsrv; the extension-level descendant isn_cst_dwsrv.
Pfc_n_cst_dwsrv contains all code for the service; n_cst_dwsrv isan
unmodified descendant to which you may add application-specific instance
variables and code.

PFC-defined user events PFC-defined user events also use the pfc_ prefix.
This makes it easy for you to distinguish your application’s user events from
PFC’s user events.

PFC documentation uses extension-level names _
PFC documentation always uses the extension-level name when referring to a

service object. For example, this book refersto w_master when discussing the
base-class window, not to pfc_w_master. But it'simportant to remember that
theinstance variables, events, and functions availabletow_master are actually
defined in pfc_w_master.

For complete information on PFC object-naming conventions, see the PFC
Object Reference.

13

How PFC uses the extension level

Sample extension
scenario

Adding extension
levels

14

PFC’s object hierarchies allow you to add extension logic at each level.
Because pfc_w_sheet inheritsfrom w_master, for exampl e, instance variabl es,
functions, and events you add to w_master are available to all descendent
windows:

Instance variables,

pfc_w_master events, and functions
added to w_master are
- available to all
w_master |2 descendants
pfc_w_sheet
w_sheet
v v
w_order_sheet w_product_sheet

The extension layer provides for reusability within an application and
effectively insulates individual applications from PFC upgrades. But large
installations that have department-wide (and perhaps corporate-wide)
standards must extend this strategy further to implement additional levels
containing corporate and departmental standards and business rules.

If you are using PFC in an organization, you may want to create additional

extension levels to contain corporate or departmental variables, events, and
functions. Applications still use objectsin PFC extension libraries but now
have access to additional ancestor instance variables, events, and functions:

pfc_n_cst_dwsrv
Create two new

extension levels to corp_n_cst_dwsrv
define corporate and _ ¥ - T —
departmental instance » dept_n_cst_dwsrv N_cst_dwsrv has access
variables, events, and to instance variables,
functions _,events, and functions

"| defined in its ancestors
n_cst_dwsrv

PowerBuilder

CHAPTER 1 About the PowerBuilder Foundation Class Library

The PFC components
PFC is made up of the following:
e A setof PBLs(libraries)

You must ensure that the objectsin these PBL s are available to PFC-based
applications by adding them to the application target library list.

The PFC PBLs

The PFC database

PFC Library User’s Guide

* A database

e Code examples

e A sample application

PFC isdistributed with PBL s contai ning ancestor objects and PBL s containing
extension-level objects. Each ancestor level/extension level set contains
objects that perform related services:

Libraries Contents

PFCAPSRV.PBL Application manager, application service objects, and other
PFEAPSRV.PBL global service objects

PFCDWSRV.PBL | Datawindow services, including user objects and utility
PFEDWSRV.PBL | Windows

PFCMAIN.PBL Standard visual user object, custom visual user object, and
PFEMAIN.PBL standard class user objects

PFCUTIL.PBL Utility objects and services

PFEUTIL.PBL

PFCWNSRV.PBL | Window services, including user objects, and utility windows
PFEWNSRV.PBL

PFCOLD.PBL Obsolete PFC objects (base and extension-level objects)

Use the Library painter
Use the PowerBuilder Library painter to see alist of all objectsin PFC

libraries.

PFC shipswith the pfc.db local database. This database containsthe following

tables:
Table Usage
Messages Error message service
Security_apps Security service
Security_groupings | Security service

15

The PFC components

The PFC code
examples

The PFC sample
application

16

Table Usage

Security_info Security service
Security_template Security service
Security_users Security service

The PFC local database isintended for devel oper use only. If your application
usesthe error message service or security service, you should copy thesetables
to aserver database, as described in “ Deploying database tables’ on page 229.

Use the PFC code examplesto view PFC objects and servicesin action and
learn how to code and implement most common PFC functionality. The PFC
code example interface provides extensive cross-reference and usage

information.

Use PEAT (the PFC sample application) to see an example of PFC used in a

project estimation and tracking system.

PowerBuilder

PART 2 PFC Class Library Design

This part describes how to extend PFC to create your own
class library.

This part is for object administrators—those responsible
for class library maintenance, enhancement, and
implementation.

CHAPTER 2

About this chapter

Contents

Designing a Class Library

This chapter explains how to use PFC as the basis for your own class
library.

Topic Page
Using PFC to design a class library 19
Choosing an extension strategy 20
Defining a new service 24

Using PFC to design a class library

The object administrator

Your role

PFC Library User’s Guide

PFC is afoundation upon which you build class libraries, leveraging
PFC’s extensible service-oriented architecture to customize behavior and
extend capabilities—and even define your own services.

PowerBuilder users who use PFC to design class libraries are obj ect
administrators. Object administrators can be:

« Corporate and departmental analysts Create PFC-based class
libraries to enable consistency and enhance functionality

« Consultants Create PFC-based classlibrariesto add valueto their
services

« Vendors UsePFC asthe basis for advanced class libraries that
meet the needs of a specific set of developers

As object administrator, you will use PFC in a different way from
developers. You will customize and enhance PFC functionality for use by
all developers. You need a thorough understanding of PFC, as well as of
your organization’s needs. Based on anticipated usage, you will extend
PFC by adding and customizing objects, services, instance variables,
events, and functions.

Your first step isto choose a PFC extension strategy.

19

Choosing an extension strategy

Choosing an extension strategy

Using separate
physical files

Although there are many waysin which sites extend and implement PFC, there
are two main PFC extension strategies:

* Create an intermediate extension level
» Usetheexisting PFC extension level

Regardless of strategy, each PFC application should have its own set of
physical files. You cannot share ancestor files (those whose name starts with
PFC). Thisis because of internal interdependencies of high-level extension
objects, such asw_master.

For example, assume that applications 1 and 2 have their own sets of PFE
extension-level libraries but share ancestor libraries. Application 1 adds a
function of _SetDatato w_master in its version of PFEMAIN.PBL; this
function is available to all descendants of w_master, including pfc_w_main,
pfc_w_frame, and pfc_w_sheet in the shared ancestor libraries. Application 2
then regenerates the application.

Because application 2 has no of _SetData function in its PFEMAIN.PBL, all
internal referencesto of SetData are removed from w_master descendants,
resulting in execution time and compiler errors for application 1.

Creating an intermediate extension level

20

To create objects that accommodate corporate or departmental usage but that
also allow developersto freely add application-wide code to the extension
level, you can define one or more intermediate extension levels. These
intermediate extension-level objects contain site- and department-specific
instance variables, events, and functions.

Following this strategy, you create a new extension level between the PFC
ancestor level and the PFC extension level. Then you redefine the PFC
extension hierarchy so that intermediate extension level objects descend from
PFC ancestor objects and PFC extension level objects descend from objectsin
theintermediate extension level. Because PFC objects use the datatype of PFC
extension level objects when declaring reference variables, these changes
become available immediately.

PowerBuilder

CHAPTER 2 Designing a Class Library

Advantages

What you do

PFC Library User’s Guide

For example, you might create a customized descendant of pfc_
n_cst_appmanager:

pfc_n_cst_appmanager

corp_n_cst_appmanager |

Youcreatea ———————»f = Corp_n_cst_appmanager
new PBL between PFC ~ adds an of_ValidateLogin
ancestor objects and function

PFC extension-level n ost

objects in the
inheritance hierarchy

This strategy has two advantages:

e Changes made to the objects in the intermediate extension level are
available to descendent objects in the PFC extension level

e Thedeveloper has complete control over the PFC extension level

Naming standards))]))
You should give objects in the intermediate extension level a standard prefix

that reflects their usage. For example, if the intermediate extension level
contains additional classlibrary functionality, use classlib _asthe prefix; if the
intermediate extension level contains corporate extensions, use corp_ asthe
prefix.

You add, modify, and extend PFC through objectsin theintermediate extension
level.

To implement an intermediate extension level, you can use the Library
Extender or create intermediate extension level objects manually.

Before After
pfc_n_cst_appmanager pfc_n_cst_appmanager

corp_n_cst_appmanager

n_cst_appmanager

n_cst_appmanager

Use the Library Extender] i]
It's best to use the Library Extender to create intermediate extension levels.

See “Library Extender” on page 225.

21

Choosing an extension strategy

How developers work

22

To manually create an additional extension level and redefine the
inheritance hierarchy:

1
2

Create a PBL to contain intermediate extension level objects.

Define objects in the intermediate extension level (by inheriting from
objectsin the PFC ancestor level) and defineinstance variables, functions,
and events as necessary. You can aso define new objectsin the
intermediate extension level.

Define instance variables, events, and functions in the extension level
objects as necessary.

Redefine the inheritance hierarchy by creating new PFC extension-level
objects that inherit from the newly defined extension level (instead of
inheriting from the PFC ancestor level).

Thistype of extension level usage gives developers complete control of the
PFC extension level. They can:

Modify and use extension-level user objects
Modify and inherit from extension-level windows, including w_master

Modify and inherit from extension-level menus (optionally using them
directly)

For example, devel opers might add application-specific functionality to
w_sheet and use it as the ancestor for all sheet windows:

Developers add
instance variables,

pfc_w_sheet / events, and functions
corp_w_sheet // for use in a}ll of an
- application's sheet
W sheet windows
w_product_sheet w_employee_sheet w_orders_sheet

PowerBuilder

CHAPTER 2 Designing a Class Library

Using the existing PFC extension level

Following thisstrategy, you add corporate or departmental modificationsto the
PFC extension level. Developers do not use the extension level.

Advantages

Disadvantages

What you do

How developers work

PFC Library User’s Guide

You add functionality ——» n_cst_appmanager
to extension level
objects

n_cst_appmanager
pfc_n_cst_appmanager adds an

of_ValidateLogin
function

This strategy has two advantages:

Developers can share a common set of PBLs during the development
phase

Users can share a common set of PBDs when deploying multiple PFC
applications

This strategy has several disadvantages:

Developers cannot modify extension level objects. Changes arelost when
the object administrator creates a new version

Thereis only one extension level. Corporate, departmental, and class
library extensions must all exist at the same level

Developers cannot extend extension level objects. Because PFC uses the
data type of PFC extension level objects when declaring reference
variables, changes to descendent objects are not automatically available
throughout PFC

You add, modify, and extend PFC through objects in the PFC extension level.

To create a new service, you add the object to the extension level and thereis
no need for an ancestor object.

When working with this extension strategy, developers use PFC services but
do not modify any objects in the PFC extension level.

23

Defining a new service

All developer extensions must be done through inheritance. For example,
developers might add appli cati on-specific functionality to an application sheet
window and use it as the ancestor for al sheet windows:

pfc_w_sheet

Developers add
w_sheet instance variables,
events, and functions

for use in all of an
application's sheet
windows
app_w_sheet
w_product_sheet w_employee_sheet w_orders_sheet

Defining a new service

24

After researching your requirements, you may need to define anew service.
This might be an associative service (working with amain object such asa
Datawindow, DataStore, or window) or an aggregate service for use anywhere
in an application.

Where to define it
If you are using the existing PFC extension level, define your new servicein

one or more separate PBLs.

If you are creating an extension level, define your ancestor object in the
intermediate extension level (the corporate level in the example ahead) and
your extension level object in the PFC extension level.

To define an associative service:

1 Create acustom class user object that contains the necessary instance
variables, functions, and events. For example, define a DataWindow
service to perform automatic row insertion. In this case, the object should
inherit from n_cst_dwsrv.

PowerBuilder

CHAPTER 2 Designing a Class Library

2 Savethisuser object in the intermediate extension level. For example, if
you have an intermediate level for corporate objects, it might be named
corp_n_cst_dwsrv_autorowinsert.

3 Create adescendent user object in the extension level. For example,
n_cst_dwsrv_autorowinsert. Add no code to this object.

4 Add an instance variable to the main object in the intermediate extension
level. Thisvariable should use the data type of the extension level object.
For example, update corp_u_dw by adding aninv_autorowinsert instance
variable of typen_cst_dwsrv_autorowinsert.

5 Addafunction tothe main object in the intermediate extension level. This
function should create or destroy an instance of your user object as
specified by a passed boolean argument. For example,
of SetAutoRowlnsert might create or destroy an instance of
n_cst_dwsrv_autorowinsert as follows:

// Function name: of SetAutoRowInsert
// Arguments: ab_switch (boolean by value)

// Returns: 1 = Success
// 0 = Already instantiated
// -1 = Argument was NULL

IF IsNull(ab_switch) THEN
Return -1
END IF
IF ab_switch THEN
IF IsNull (inv_autorowinsert) OR &
NOT IsValid(inv_autorowinsert) THEN
inv_autorowinsert = CREATE n_cst_autorowinsert
// of SetRequestor = defined in ancestor
inv_autorowinsert.of SetRequestor (this)
Return 1
END IF
ELSE
IF IsValid(inv_autorowinsert) THEN
DESTROY inv_autorowinsert
Return 1
END IF
END IF
Return 0

6 Add code to the Destructor event of the main object in the intermediate
extension level. This code should destroy your user object:

this.of SetAutoRowInsert (FALSE)

PFC Library User’s Guide 25

Defining a new service

26

Add code as necessary to eventsin the main object. This code should call
events on the service object, if enabled. For example, the automatic row
insertion service might add the following code to the RowFocusChanging
event:

IF IsValid(inv_autorowinsert) THEN
inv_autorowinsert.Event corp FocusChanging &
(currentrow, newrow)
END IF

v To define an aggregate service:

1

Create a custom class user object that contains the necessary instance
variables, functions, and events. Optionally assign the Autolnstantiate
property to this object.

Save this user object in the intermediate extension level.

Create a descendent user object inthe extension level. Add no codeto this
object.

Use this object in event and function scripts as necessary. Reference
variables for this object should use the data type of the extension level
object.

PowerBuilder

PART 3 PFC Programming

This part explains how to program using PFC and PFC
services.

This part is for application developers.

CHAPTER 3

About this chapter

Contents

PFC Programming Basics

Thischapter explains basic PFC programming practices and tellsyou how
to get started with a PFC application.

Assumptions
This chapter and al remaining chapters in this manual assume an

intermediate extension level strategy, which allows the devel oper to
modify and extend objects in the PFC extension level.

Topic Page
Setting up the application manager 29
Building applications 33
Using attribute objects 38
Using PFC constants 40
The message router 41
Transaction management with PFC 43
Calling ancestor functions and events 45
Adding online Help to an application 46
Installing PFC upgrades 47

Setting up the application manager

PFC Library User’s Guide

Thefirst step in creating an application with PFC is configuring and
enabling the application manager, n_cst_appmanager. Within the
application manager, you code logic that would otherwise be in the
Application object.

The application manager aso has instance variables and functions to
maintain application attributes, such asthe framewindow, application and
user INI files or registry keys, and the application Help file.

29

Setting up the application manager

30

To set up the application manager:

Define an application target library list that contains PFC PBLS:

PFCAPSRV.PBL
PFCDWSRV.PBL
PFCMAIN.PBL
PFCUTIL.PBL
PFCWNSRV.PBL
PFEAPSRV.PBL
PFEDWSRV.PBL
PFEMAIN.PBL
PFEUTIL.PBL
PFEWNSRV.PBL

PFCOLD.PBL
If your application uses obsolete PFC objects from a previous rel ease of

PFC, include PFCOLD.PBL in thelibrary list.

From the Application painter, display the Variable view and declare a
global variable, gnv_app, of type n_cst_appmanager:

n_cst_appmanager gnv_app

The variable name must be gnv_app
PFC objects, functions, and events require that you define the application

manager as gnv_app, with a datatype of n_cst_appmanager (or an
n_cst_appmanager descendant).

In the painter Script view, add PowerScript code to your application’s
Open event to create n_cst_appmanager and call the pfc_Open event:

gnv_app = CREATE n_cst_ appmanager
gnv_app.Event pfc Open(commandline)

Add codeto your application’s Close event to call the pfc_Close event and
destroy n_cst_appmanager:

gnv_app.Event pfc Close()
DESTROY gnv_app

Add code to your application’s SystemError event to call the
pfc_SystemError event:

gnv_app.Event pfc SystemError()

Close the Application painter and save the changes.

PowerBuilder

CHAPTER 3 PFC Programming Basics

7 Display the User Object painter and open n_cst_appmanager, found in
PFEAPSRV.PBL. (Optionally, use an application-specific descendant of
n_cst_appmanager.)

8 Cal n_cst_appmanager functionsin the Constructor event to initialize
instance variables for version, company, and INI file.

9 Cdl n_cst_appmanager functionsin the pfc_Open event to enable the
application services you want:

To enable this service Call this function
Application preference of_SetAppPreference
Datawindow caching of_SetDWCache
Error of_SetError

Most recently used object of _SetMRU
Transaction registration of_SetTrRegistration
Security of_SetSecurity
Debug of_SetDebug

10 Add codeto the pfc_Open user event to open your application’s initial
window (typically the frame window), optionally including acall to the
of _Splash function, which displays a splash screen.

11 (Optional) Add codeto the pfc_PreAbout, pfc_Prel ogonDlg, and
pfc_PreSplash events to customize elements of the About box, logon
dialog box, and splash screen.

12 (Optional) Add codeto the pfc_ldle, pfc_ConnectionBegin, and
pfc_ConnectionEnd events. If so:

e Cal pfc_ldle from the application’s Idle event.

e Call pfc_ConnectionBegin from the application’s ConnectionBegin
event.

e Call pfc_ConnectionEnd from the application’s ConnectionEnd
event.

13 Saven_cst_appmanager.

v To display a splash screen:

e Cal the of_Splash function just before opening the initial window in the
pfc_Open event:

this.of Splash(1)
Open (w_tut frame)

PFC Library User’s Guide 31

Setting up the application manager

v To display alogon screen:
1 Cadll theof_LogonDlg in the frame window’s Open event:

Integer 1li return
1li return = gnv_app.of LogonDlg()
IF 1i return = 1 THEN
this.SetMicroHelp ("Logon successful")
ELSE
MessageBox ("Logon", "Logon failed")
Close (this)
END IF

Of _LogonDIg displaysthe w_logon dialog box, which prompts for user
ID and password and callsthe n_cst_appmanager pfc_Logon event when
the user clicks OK.

Alternatively, you can call the of _LogonDlg function in the
n_cst_appmanager pfc_Open event, immediately after opening the frame
window. Do not call of LogonDIlg immediately after calling of _Splash.

2 Addscripttothen_cst_appmanager pfc_Logon event to log the user onto
the database. This example assumes an INI file that contains all
information except user ID and password; it also assumes you've
associated SQLCA with n_tr, PFC’s customized Transaction object:

Integer 1li return
String 1s_inifile, 1ls_userid, 1ls_ password

ls inifile = gnv_app.of GetAppIniFile()
IF SQLCA.of Init(ls inifile,"Database") = -1 THEN
Return -1
END IF
// as_userid and as_password are arguments
// to the pfc Logon event
SQLCA.of SetUser (as userid, as_ password)
IF SQLCA.of Connect() = -1 THEN
Return -1
ELSE
gnv_app.of SetUserID(as_userid)
Return 1
END IF

32 PowerBuilder

CHAPTER 3 PFC Programming Basics

Building applications

Building MDI
applications

PFC Library User’s Guide

To build an MDI application with PFC, usethew_frameandw_sheet windows
astheancestorsfor your frame and sheet windows. To define events, functions,
and instance variables for al your application’s sheets, add them to w_sheet.

You must also define menu items for all sheet windowsin an ancestor sheet
menu (m_master, m_frame, or an application-specific sheet-menu ancestor,
depending on your menu strategy).

For information on the strategies you can use to implement menus under PFC,

see

“Using menus with PFC” on page 201.

To build an MDI application with PFC:

1

N

© 00 N o O

Add application-specific modifications to w_frame, optionally creating a
frame window that inherits from w_frame.

(Optional) Add ancestor instance variables, functions, and user events to
w_shest.

Create sheet windows that inherit from w_sheet.

Create a frame menu according to your menu strategy, optionally using
m_frame, PFC’s frame menu.

Associate the frame window with the customized frame menu.

Create sheet menus according to your menu strategy.

Associate sheet windows with sheet menus.

Open the frame window in the n_cst_appmanager pfc_Open user event.
(Optional) Enable frame window services as necessary:

e Enablethe status bar service by callingthew_frame of SetStatusBar
function

« Enablethe sheet manager service by calling thew_frame
of SetSheetManager function

To open sheet windows in an MDI application:

1

Add code to the Clicked event for the menu items that open sheet
windows. This code should assign the sheet window name to
Message.StringParm and call the of SendMessage function, passing the
pfc_Open event name:

n_cst_menu lnv_menu

33

Building applications

Building SDI
applications

Programming using
PFC functions

34

Message.StringParm = "w_products"
Inv_menu.of SendMessage (this, "pfc Open")

2 Add codeto thew_frame pfc_Open event that accesses
Message. StringParm and opens the specified sheet window:

String 1ls_sheet
w_sheet 1lw_sheet

ls sheet = Message.StringParm
OpenSheet (1w_sheet, 1ls sheet, this, 0, Layered!)

To build an SDI application with PFC, usethew_main window asthe ancestor
for your main windows. To implement events, functions, and instance variables
so they are available in all windows, add them to w_main.

If your windows use menus, you must also define menus for each window.

For information on the strategies you can use to implement menus under PFC,
see “Using menus with PFC” on page 201.

To build an SDI application with PFC:

1 Create amain window that inherits from w_main, optionally modifying
w_main directly.

2 Create amain menu according to your menu strategy.
3 Create additional windows and menus as appropriate.
4 Openthe main window in the n_cst_appmanager pfc_Open user event.

Almost all PFC functions are object functions. This means they are defined
within a PowerBuilder object (Window, Menu, or user object). Encapsulating
functions within a PowerBuilder object enables you to quickly see which
functions apply to the object.

PFC uses the Set/Get/Is naming convention to control access to instance
variables:

» of Setfunctionsallow you to set the value of an instance variable
» of Get functions alow you to access a nonbool ean instance variable

» of Isfunctionsallow you to determine the state of a boolean instance
variable

PowerBuilder

CHAPTER 3 PFC Programming Basics

PFC Library User’s Guide

Other types of instance variable access
PFC also declares certain instance variables as public, allowing you to access

them directly. Additionally, some variablesarefor internal use only and are not
accessible viafunction call.

In addition to the Set/Get/Is convention, PFC uses a Register/UnRegister
convention when defining a set of entities to be affected by a service. For
example, you call theu_calculator object’s of _Register function to define the
Datawindow columns that use a drop-down calcul ator.

Object qualification PFC uses access levels (public, private, protected) to
control your access to functions designed for internal use.

When you call these functions from outside the object, use dot notation to
qualify the function name. Qualify the function name with the reference
variable used to create the object (in some cases you qualify the function name
with the actual object name).

To call PFC object functions:
1 Ensurethat the object has been created.

PowerBuilder creates windows, menus, and visual user objects when the
window opens. You create most class user objects using an

of _Setservicename function (defined in u_dw, n_cst_appmanager,
w_master, or u_dw).

For example, the following u_dw object function creates the sort service
(n_cst_dwsrv_sort user object) and saves areferencetoitinu_dw’s
inv_sort instance variable. You typically code these functionsin the
Datawindow’s Constructor event:

this.of SetSort (TRUE)

Autoinstantiated objects
Certain PFC objects use PowerBuilder’s autoinstantiate feature. These

objects have no Set functions; PowerBuilder instantiates them
automatically when you declare them as variables.

2 Cadll object functions from your application, as appropriate.

This example specifiesthat the sort service will use Datawindow column
header names, sort on displayed values, implement point-and-click
sorting, and display a drag-drop style dialog box when the user selects
View>Sort from the menu bar:

35

Building applications

Programming using
PFC events

Using precoded
events and user
events

36

this.inv_sort.of SetColumnNameSource &
(this.inv_sort.HEADER)

this.inv _sort.of SetUseDisplay (TRUE)

this.inv_sort.of SetColumnHeader (TRUE)

this.inv_sort.of_ SetStyle &
(this.inv_sort .DRAGDROP)

Function overloading PFC usesfunction overloading to provide arich,
flexible application programming interface. It implements function
overloading in two ways:

e Multiple syntaxes Multiple functions contain arguments that use
different datatypes or are in adifferent order. This allows PFC to handle
many types of datain function arguments

« Optional arguments Multiple functions contain an increasing number
of arguments with the same data types and in the same order. This allows
PFC to provide defaults for commonly used arguments

Overloaded functions for internal use only
In addition to a series of Public overloaded functions, PFC often provides a

Protected version, which the other versions call internally. For example, the
n_cst_dwsrv_report of AddLine function has four Public versions, and one
Protected version that is called by the other four. Although you can call
Protected versionsin some cases, they are intended for internal use only and
are subject to change.

PFC includes precoded events and user events, which perform processing to
implement PFC services. It also includes empty user events, which allow you
to add application-specific code to perform application-specific tasks.

All events have public access and you can use dot notation to call them.

PFC includes extensive precoded functionality. This means that by enabling a
PFC service, PFC objects detect the enabled service and perform the
processing defined in the precoded events.

An example of aprecoded eventistheu_dw Clicked event, which callscertain
Datawindow service functionsif they are enabled.

You can extend these events; do not override them.

For information on accessing the return value from an ancestor event, see
“Calling ancestor functions and events’ on page 45.

PowerBuilder

CHAPTER 3 PFC Programming Basics

Using empty user
events

How PFC uses events

Using PFC pre-event
processes

PFC Library User’s Guide

PFC includes empty user events into which you can add application-specific
code. Many of these events are triggered by menu items, using the message
router. Others are meant to be triggered by application-specific code.

An example of an empty user event istheu_dw pfc_Retrieve event, to which
you add logic that retrieves rows:

Return this.Retrieve ()
For complete information on PFC user events, see the PFC Object Reference.

When using events in the context of services, PFC typically behaves as
follows:

1 Within the event on the requestor object, call the corresponding event on
the service object, passing arguments as appropriate. For example, the
u_dw Clicked event callsthen_cst_dwsrv_sort pfc_Clicked event,
passing the x position, y position, row, and DW object (that is, the
arguments to the Datawindow Clicked event).

2 Theevent on the service object performsthe required action, calling other
object functions as appropriate. For example, then_cst_dwsrv_sort
pfc_Clicked event performs extensive processing, including callsto
n_cst_dwsrv_sort functions.

Use the events
Although you can usually call PFC object functions directly, it's easier to call

the corresponding events since they already contain error checking.

PFC includes many pre-event processes, to which you add code that
customizes or extends the functionality of the associated event. For example,
you add code to the pfc_PreRMBMenu event to control the items that appear
in a pop-up menu. Other events that feature pre-event processing include:

pfc_PreAbout
pfc_PreClose
pfc_Prel ogonDlg
pfc_PreOpen
pfc_PrePageSetupDlIg
pfc_PrePrintDIg
pfc_PreRestoreRow
pfc_PreSplash
pfc_PreToolbar
pfc_PreUpdate

37

Using attribute objects

Typically, these events are passed an autoinstantiated user object by reference.
Thisuser object contains properties used to control processing in the associated
event. You modify user object properties to modify or extend processing. In
some cases, you will need to modify additional objects. For example, to control
the display of an additional field in the About box, you might:

1 Extendthen_cst_aboutattrib user object by adding an instance variable
that contains the value to be displayed in the w_about window (a user ID
in the example ahead).

2 Addthefield to the w_about window (sle_userid in the example ahead).

3 Add code to the w_about Open event that accessesthe n_cst_aboutattrib
user object (available astheinv_aboutattrib instance variabl€) and copies
the user ID to the SingleLineEdit:

sle userid.text = inv_aboutattrib.is userid

4 Add codetothen _cst_appmanager pfc_PreAbout event to initialize the
value:

anv_aboutattrib.is userid = this.of GetUserID()

To display w_about, call the application manager of About function.

Using attribute objects

38

PFC provides a number of attribute-only user objects. These user objects:
e Contain public instance variables

* Areautoinstantiated

* Have namesthat end with attrib

» Areoften used to pass information to PFC pre-event processes, such as
pfc_PreAbout

» Areextensible (you can define additional instance variables)
Because you can extend these objects, PFC uses them instead of structures.

In addition to defining additional public instance variables, you can also use
access levels and object functions to further customize the object’s behavior.

Attribute objectsinclude:

PowerBuilder

CHAPTER 3 PFC Programming Basics

Attribute object

Associated with

Usage

n_cst_aboutattrib

Pfc_PreAbout
(n_cst_appmanager)

Open w_about by calling the
n_cst_appmanager of_About
function

n_cst_calculatorattrib Constructor (u_calculator) Internal
n_cst_calendarattrib Constructor (u_calendar) Internal
n_cst_columnattrib ListView data access objects Set with of _
RegisterReportColumn

n_cst_dberrorattrib Logical unit of work service Internal

(n_cst_luw)
n_cst_dirattrib File service objects Internal
n_cst_dssrv_multitableattrib DataStore multitable update Internal

service
n_cst_dwcacheattrib Caching service Internal

n_cst_dwobjectattrib

Of _Describe (n_cst_dssrv and
n_cst_dwsrv)

Of _Describereturns DatawWindow
propertiesin this object

n_cst_dwpropertyattrib Datawindow Properties objects Internal

n_cst_dwsrv_dropdownsearchattrib Search service for Internal
DropDownDatawindows and
DropDownListBoxes

n_cst_dwsrv_multitableattrib Datawindow multitable update Internal
service

n_cst_dwsrv_querymodeattrib Serviceto enable or disable query | Internal
mode

n_cst_dwsrv_resizeattrib

DataWindow resize service

Set with n_cst_dwsrv_
resize of_register function

n_cst_errorattrib

Error message service

Used to pass display information
tow_message

n_cst_filterattrib

Datawindow filter service

Used to pass information to filter
dialog boxes

n_cst_findattrib Datawindow find service Used to pass information to Find
dialog box
n_cst_infoattrib Datawindow Properties objects Internal
n_cst_itemattrib PFC ListBox, PictureListBox, and | Interna
TreeView
n_cst_linkageattrib Datawindow linkage service Internal

n_cst_logonattrib

Pfc_Prel.ogonDlg
(n_cst_appmanager)

Openw_logon by calling the
n_cst_appmanager of _LogonDIg
function

n_cst_lvsrvattrib

PFC Library User’s Guide

ListView data access objects

Set with of _Register

39

Using PFC constants

Attribute object

Associated with

Usage

n_cst_mruattrib

MRU service

Usein the window’s
pfc_MRUProcess and
pfc_PreMRUSave events

n_cst_propertyattrib

Datawindow Properties objects

Internal

n_cst_resizeattrib Resize service Internal

n_cst_restorerowattrib Datawindow row manager Internal
service

n_cst_returnattrib Datawindow filter and sort Internal

services

n_cst_selectionattrib

Selection service

Populated with arguments to the
n_cst_selection of_Open function

n_cst_sortattrib Datawindow sort service Used to pass information to the
sort dialog boxes

n_cst_splashattrib Pfc_PreSplash event Open w_splash by calling the

(n_cst_appmanager) n_cst_appmanager of_Splash

function

n_cst_sqlattrib SQL service Contains the components of a
SQL SELECT statement

n_cst_textstyleattrib PFC RichTextEdit control Use to get and set text properties

(bold, italic, and so on)

n_cst_tmgregisterattrib

Timing service

Internal

n_cst_toolbarattrib

Pfc_PreToolbars event (w_frame)

Open w_toolbars by calling the
w_frame pfc_Toolbars event

n_cst_trregistrationattrib

Transaction registration service

Used to track Transaction objects

n_cst_tvattrib

TreeView service

Internal

n_cst_tvsrvattrib

TreeView data access object

Set with of_Register

n_cst_winsrv_sheetmanagerattrib Sheet management service Internal
n_cst_winsrv_statusbarattrib Status bar service Internal
n_cst_zoomattrib Datawindow print preview Internal

Using PFC constants

service

Many PFC objects include instance variables that are declared as constants.
You can use these instance variables to create more readable code. For
exampl e, both of thefollowing functions set the DataWindow linkage style, but
the second is easier to understand:

40

PowerBuilder

CHAPTER 3 PFC Programming Basics

// 1 = Filter linkage style.
dw_emp.inv_linkage.of SetStyle (1)

// FILTER is a constant instance variable

// that is initialized to 1.

dw_emp.inv_linkage.of SetStyle &
(dw_emp.inv_ linkage.FILTER)

Coding conventions .
The PFC convention isto code constantsin all caps.

The message router

Using the message
router

Built-in debugging
messages

PFC Library User’s Guide

PFC uses amessage router to handle communication between menus and
windows. This customized message-passing mechanism is built into all PFC
menus and windows.

Although you can use the message router to communicate between any object
and awindow, it istypically used to pass messages from menus to windows. It
implements a customized searching algorithm to determine the appropriate
object to receive the message.

By using the message router:

« Your menu script only needsto know the user event to call; it doesn’t need
to know the current window or the associated control name.

e Your windows do not need to maintain user events that smply call
Datawindow user events. This reduces the number of user events
maintained by the window.

Message = user event
The message passed by a message router function is actually a string

containing the name of a user event to be triggered by the window or one of its
controls.

The message router includes built-in debugging messages to provide error
information.

41

The message router

How
of_SendMessage
works

How pfc_
MessageRouter works

42

When the user selects a menu item, the item’s Clicked event script calls the
menu’s of SendM essage function, passing the name of the user event to be
called. Of SendMessage callsthe n_cst_menu of SendMessage function,

which calls the window’s pfc_MessageRouter event, which in turn calls the

specified user event.

Of _SendMessage calls the pfc_MessageRouter user event differently
depending on whether the application is MDI or SDI:

MDI
Application?

Does passed event
exist in sheet window?

No

v

Call
pfc_MessageRouter
on the frame window

No—»

Call
pfc_MessageRouter
on the parent window

Yes >

Call
pfc_MessageRouter
on active sheet

The pfc_MessageRouter user event calls the passed user event in the window,
the active control, and the last active DataWindow:

Does passed event
exist in window?

No

Does passed event
exist in current
control?

Does passed event
exist in last active
DataWindow?

Trigger user event in
window

Trigger user event in
current control

Yes —»

Trigger user event in
last active
DataWindow

PowerBuilder

CHAPTER 3 PFC Programming Basics

Pass messages between menus and windows _
The message router is primarily a mechanism to communi cate between menus

and windows. Except for CommandButtons inside DataWindows, you cannot
use buttonsto call the pfc_MessageRouter event. Thisis because the message
routine calls the GetFocus event to access the current control, which, after you
click a CommandButton, is the button itself.

Transaction management with PFC

The n_tr user object

Two ways to use n_tr

PFC Library User’s Guide

Oneof PowerBuilder’'skey strengthsisitsability to accessavariety of DBMSs
quickly and easily. PowerBuilder uses the transaction object as a
communications area between PowerScript and the database. SQLCA isthe
default PowerBuilder Transaction object.

PFC includesthen_tr user object. N_trisacustomized Transaction object that
inherits from the Transaction system object. This customized Transaction
object includes instance variables, events, and functions to encapsul ate and
extend database communication.

N_tr hel psyou manage transactions by providing astandard set of functionsfor
performing database connects, disconnects, commits, and rollbacks. Usen_tr
functions instead of native SQL transaction management statements. For
exampl e, to connect to the database, use of _Connect instead of the CONNECT
statement.

You use n_tr in two ways:

+ As areplacement for SQLCA Usethe Application painter’s Properties
dialog box to specify that the default SQL CA will be of datatypen tr

+ In addition to SQLCA Define an instance variable of type n_tr and
create it programmatically

If your application requires more than one Transaction object, you will use
both of these methods.

If using more than one Transaction object, you can use the transaction
registration service to perform functions such as committing all open
transactions or rolling back all open transactions.

See Chapter 4, “Using PFC Services'.

43

Transaction management with PFC

v To associate n_tr with SQLCA:

1 Accessthe Application painter.

2 Display the Properties view, click the Additional Properties button and
select the Variable Types tab.

Type n_tr in the SQLCA box.
4 Click OK.

v Tousen_tr:
1 If you are using a Transaction object other than SQLCA, createit.

This example assumes an itr_security instance variable of type n_tr.
itr security = CREATE n_tr

2 Initializetheib_autorollback instance variable, which specifieswhat to do
if the application closes (or the abject is otherwise destroyed) while the
transaction is still connected:

itr security.of SetAutoRollback (FALSE)

Initialize ib_autorollback in the extension level)
You can enforce transaction consistency by initializing ib_autorollback in

the n_tr Constructor event.

3 Initialize Transaction object fields using the of _Init function:

String ls_inifile

ls inifile = gnv_app.of GetAppIniFile()

IF SQLCA.of Init(ls inifile,"Database") = -1 THEN
MessageBox ("Database™", &
"Error initializing from " + 1ls_inifile)
HALT CLOSE
END IF

4 Connect to the database by calling the of _Connect function:

IF SQLCA.of Connect() = -1 THEN
MessageBox ("Database", &
"Unable to connect using " + 1ls_inifile)
HALT CLOSE

44 PowerBuilder

CHAPTER 3 PFC Programming Basics

ELSE
gnv_app.of GetFrame () .SetMicroHelp &
("Connection complete")
END IF

5 Cal n_tr functions as needed.

Calling ancestor functions and events

PFC Library User’s Guide

In extending ancestor functions and events, you may need to call the ancestor
method and continue processing based on itsreturn value. Thisis especially
important when extending PFC events (those that begin with the pfc_ prefix)
that use return codes. You must check the return code to ensure that ancestor
processing succeeded before performing descendent processing.

Overriding ancestor events
To extend a PFC event that uses areturn code, you must override the event and

call the ancestor event explicitly, as shown in this discussion.

Use the following syntax to call an ancestor event, passing arguments and
receiving areturn code:result = Super::Event eventname (arguments....)

Use the following syntax to call an ancestor function, passing arguments and
receiving areturn code:result = Super::Function functionname (arguments ...)

Thisexample overridestheu_dw pfc_Update event, writing to an updatelog if
the ancestor event processes successfully:

Integer 1li return

// Call ancestor event, passing

// descendant's arguments.

1i return = Super::Event pfc Update &
(ab_accepttext, ab resetflag)

IF 1i return = 1 THEN

// ue WriteLog is a user-defined event.

1i_return = this.Event ue_ WriteLog

END IF

Return 1li return

45

Adding online Help to an application

Adding online Help to an application

46

Online Help is an important part of any application. PFC provides functions
and eventsto enable online Help in your application.

For information on PFC dialog Help, see “ Deploying PFC dialog box Help
on page 230.

To enable online Help in a PFC application:

1 Withinn_cst_appmanager or a descendant, you can use the Properties
view to assign the complete name of the Help file to theis_helpfile
instance variable.

Alternatively, you can call the of_SetHelpFile function to establish the
Help filename. You usually do thisin the Constructor event:

this.of SetHelpFile("c:\eis\eisapp.hlp")

2 Specify the Help topic associated with the window. The pfc_PreOpen
event isagood place for this:

Long 11 helpid

11 helpid = 1020 // 1020 is a Help topic ID
ia helptypeid = 11 helpid

Thisallowsyouto provide detailed online Help for sel ected windows. You
can setia_helptypeidto either along (which PFC interpretsasaHelp topic
ID) or astring (which PFC interprets as a search keyword).

3 (Optiona) If you are not using adescendant of PFC'sm_master menu, add
callsto the window’s pfc_Help user event in your menu’'s Help menu
items. Pfc_Helpisdefined inw_master soitisavailablein all PFC
windows.

4 Fordialogboxes, call thepfc_Help user event in the Hel p button’s Clicked
event:

Parent.Event pfc Help()

PFC handles window-level Help automatically
The message router calls the active window’s pfc_Help user event when

the user selectsHel p>Help Topicsfrom the menu bar of amenu descended
from m_master.

PowerBuilder

CHAPTER 3 PFC Programming Basics

Installing PFC upgrades

Sybase distributes regular maintenance rel eases between major PowerBuilder
releases. In addition to PowerBuilder updates, each maintenance release also
includes updates to PFC. The way you apply PFC maintenance depends on
your PFC usage:

» No modifications to either PFC level If thereisno modification to
either the PFC ancestor level or the PFC extension level, you can simply
install the new set of PBLs over the existing PBLs

Always make a backup copy
Always make a backup copy of all PFC PBLs before installing updated

PBLs. These instructions assume that you have made a backup.

« One or more intermediate extension levels or developer code in the
PFC extension level If you have changed any of the levels below the

PFC ancestor level, you must ensure that extensions and other
modifications are not overwritten, as described in the discussion bel ow.

v To upgrade to the latest PFC release:

1 Moveadl extension-level PBLsto adirectory that will not be overwritten
by the install procedure.

PFC ancestor objects
You should never modify PFC ancestor objects (objects with the pfc_

prefix). These instructions assume no modifications have been made to
PFC ancestor objects.

2 Determineyour current version. You can find the current version at thetop
of the current PFC readme.txt file or in instance variables defined in
pfc_n_cst_debug. The version isin the format
maj or revision.minorrevision.fixesrevision.

3 Runtheinstall procedure, placing the PFC PBLsin the current PFC
directory and overwriting the current PFC ancestor PBLs.

PFC Library User’s Guide 47

Installing PFC upgrades

4 Merge existing extension objects with new extension objects. Review the
newly installed readme.txt fileto seealist of new extension objects. There
aretwo methods of merging existing extension objectswith new extension
objects:

« Copy new objects to customized extension PBLs Copy each
new object from the newly installed PFC extension level PBL to your
customized extension PBL. Then copy the customized extension
PBLsback to their original directory, overwriting the newly installed
PFC extension PBLs.

« Copy existing objects to the new PFC extension PBL Copy all
objectsfrom the customized extension PBL sto the appropriate newly
installed PFC extension PBL.

5 Start PowerBuilder.
6 Adjust the application target library list if necessary.
7 Perform afull rebuild of the target.

48 PowerBuilder

CHAPTER 4

About this chapter

Contents

Using PFC Services

This chapter explains PFC services and how to use them.

Application services

PFC Library User’s Guide

Topic Page
Application services 49
DataWindow services 63
Window services 89
Menu service 95
Resize service 96
Conversion service 98
Date/Time service 99
File service 101
INI file service 102
Numerical service 103
Platform service 105
Selection service 106
SQL parsing service 108
String-handling service 109
Metaclass service 11
Logical unit of work service m
List service 114
Timing service 126
PFC provides the following application services:

Datawindow caching

Debugging

Error

Application preference

Most recently used object

49

Application services

Security
Transaction registration

You control application servicesthrough n_cst_appmanager, the application
manager. Use application manager functionsto enable and disable application
services. Because they are scoped to the application manager, which you define
asaglobal variable, application services are available from anywhere within
your application.

DataWindow caching service

Overview

Usage

50

The Datawindow caching service buffers data for DataWindow objects. By
keeping rows in memory, the DataWindow caching service helpsto reduce
database access, optimizing application performance. The Datawindow
caching service supports the following data sources:

» Datawindow object (using either data retrieved from the database or data
stored with the DataWindow object)

e SQL statement

» Datawindow control
» DataStore control

e Rowsfrom an array
« Afile

The Datawindow caching service uses PowerBuilder DataStores to buffer
data.

PFC enables DataWindow caching through the n_cst_dwcache user object.

PFC code is in ancestor-level objects
This book always refersto extension-level objects (such asn_cst_dwcache).

All PFC codeis actually in ancestor-level objects (such as
pfc_n cst_dwcache).

Use Datawindow caching to minimize database access and optimize
performance.

To enable DataWindow caching:
e Cdl then_cst_appmanager of SetDWCache function:

gnv_app.of SetDWCache (TRUE)

PowerBuilder

CHAPTER 4 Using PFC Services

v To use DataWindow caching:

1 Cachedataby caling the of Register function, passing different
arguments depending on the data to be cached:

e Tocacherowsretrieved from the database via a DataWindow object,
passan identifier, a Transaction object, the Datawindow object name,
and arguments if any

e Tocacherowsretrieved from the database viaa SQL statement, pass
an identifier, a Transaction object, and the SQL statement

« Tocacherowsin an array, pass an identifier, the DataWindow object
name, and the data

¢ To cacherowsfrom a Datawindow control, pass an identifier and the
Datawindow control

e Tocacherowsfrom aDataStore, pass an identifier and the DataStore
instance

¢ To cacherowsfrom afile, pass an identifier and the filename

2 Todetermineif a Datawindow object is already registered with the
caching service, call the of _|sRegistered function, passing the object’s
identifier.

3 To access cached data from, call the of _GetRegistered function. This
example assumes an ids_datastore instance variable:

gnv_app.inv_dwcache.of GetRegistered &
("d _emplist", ids datastore)
ids datastore.ShareData (dw_emplist)

4 Toreretrievedatafor acached Datawindow, call the of Refresh function.
To stop caching, call the of _UnRegister function.

6 (Optional) Disable the DataWindow caching service by calling the
n_cst_appmanager of SetDWCache function:

gnv_app.of SetDWCache (FALSE)

In most cases, you do not disable Datawindow caching explicitly. PFC
destroysn_cst_dwcache automatically when your application shuts down.

PFC Library User’s Guide 51

Application services

Debugging service

Overview The debugging service automatically displays messages when PFC encounters
conditions that indicate an error.

The PFC message router uses the debugging service to control the display of
error messages when a passed event does not exist.

Development tool only
The PFC debugging service is a development tool only. Do not enableitin

production applications.

Usage Use the debugging serviceto help you solve problemsin the PFC devel opment
environment.

v To use the debugging service:

1 Enablethe debugging service by calling the n_cst_appmanager
of _SetDebug function:

gnv_app.of SetDebug (TRUE)

2 PFC objects check for the target’s debugging status and, in certain
conditions, display error messages.

3 (Optional) Disable the debugging service by calling the
n_cst_appmanager of SetDebug function:

gnv_app.of SetDebug(FALSE)
In most cases, you do not disable the debugging service explicitly.

For information on SQL Spy and the Datawindow Property window (two
debugging utilities supplied with PFC) see Chapter 7, “PFC Utilities”.

Application preference service

Overview You use the application preference service to save and restore application and
user information using either an INI file or the Windows registry. Saving and
loading application settings has two advantages:

« Persistence By saving application state, users don't have to reset their
application preferences each time they start the application

« Ease of maintenance By externalizing application settings, you can
update application settings without updating code in n_cst_appmanager

52 PowerBuilder

CHAPTER 4 Using PFC Services

Saving and loading
settings

PFC Library User’s Guide

PFC enabl es the application preference service through the
n_cst_apppreference user object.

This service saves the following application information:

User key

MicroHelp

Help file

Version

Logo bitmap

Copyright notice
DDETimeOut property
DisplayName property
DWMessageTitle property
MicrohelpDefault property
RightToL eft property
ToolbarFrameTitle property
ToolbarPopMenuText property
ToolbarSheetTitle property
ToolbarUserControl property

The application preference service can also save the following user
information:

ToolbarText property
ToolbarTips property
User ID

The application preference service automatically loads settings when the
application opens and stores them when the application closes. This
informationisstored in either theregistry (available on Windows) or anINI file
(available on all platforms), which you specify asfollows:

Registry Call the of _SetUserKey function, specifying the registry key
that contains application preference information.

INI file Call the of_SetUserINIFile function, specifying the INI file that
contains application preference information.

To use the application preference service:

1 Enablethe application preference service by calling the

n_cst_appmanager of _SetAppPref function:

gnv_app.of SetAppPref (TRUE)

53

Application services

2 Specify the platform-specific repository for application preferences. This

exampl e from an application manager Constructor event saves application
preferencesin theregistry or INI file, depending on the execution
platform. It assumes you' ve already established n_cst_appmanager
specifications for application key, user key, application INI file, and user
INI file:

IF this.of IsRegistryAvailable() THEN
this.inv_ apppref.of SetAppKey &
(this.of GetAppKey())
this.inv_apppref.of SetUserKey &
(this.of GetUserKey())

ELSE
this.inv apppref.of SetAppINIFile &
(this.of GetAppINIFile())
this.inv apppref.of SetUserINIFile &
(this.of GetUserINIFile())

END IF

Specify the types of information to save by calling the of SetRestoreA pp
and of _SetRestoreUser functions:

this.inv_ apppref.of SetRestoreApp (TRUE)
this.inv_apppref.of SetRestoreUser (TRUE)

Most recently used object service

Overview

54

You use the most recently used (MRU) object service to display alist of most
recently used windows on the File menu. By default thislist displaysuptofive
items, but, you can increase this number.

PFC enables the MRU service through the n_cst_mru user object.

The MRU service automatically loads MRU information when the application
opens. The service saves information in either the registry (available on
Windows) or an INI file (available on all platforms), which you specify as
follows:

Registry Call the of _SetUserKey function, specifying the registry key
that contains MRU information

INI file Call the of_SetUserINIFile function, specifying the INI file that
contains MRU information

PowerBuilder

CHAPTER 4 Using PFC Services

You must write
processing code

Use IDs to identify
groups of windows

Integration with PFC
menus

PFC Library User’s Guide

To use the MRU service, you must extend the following window eventsin all
windows that are to display on the file menu as MRU objects:

» Pfc_MRUProcess Add code that uses the passed MRU information to
open the specified window

« Pfc_PreMRUSave Add code that saves MRU information
« Pfc_MRURestore Add code that restores MRU information

You specify | Dstoidentify windows or groups of windowsthat appear together
on the file menu. By using IDs you can restrict and customize MRU display.
For example, when displaying a particular sheet, you might want to restrict
MRU display to instances of that sheet only. In other applications, you might
want all sheetsto display the same MRU items.

The PFC m_master menu includesfive MRU items at the end of the File menu.
You can add more MRU items if necessary.

If your application uses non-PFC menus, use m_master asamodel in creating
your own MRU menu items.

To use the MRU service:

1 Enablethe MRU service by calling then_cst_appmanager of SetMRU
function:

gnv_app.of SetMRU (TRUE)

2 Specify where MRU information isto be saved by calling either the
n_cst_ mru of _SetUserKey function (on Windows platforms) or the
of SetUserINIFile function (al platforms). This example from an
application manager Constructor event saves MRU information in the
registry or INI file. It assumes you' ve already established the
n_cst_appmanager user key or user INI file:

IF this.of IsRegistryAvailable() THEN
this.inv_mru.of SetUserKey &
this.of GetUserKey())

ELSE
this.inv_mru.of SetUserINIFile &
(this.of GetUserINIFile())

END IF

55

Application services

56

Register IDs to be tracked by the MRU service by calling then_cst_mru
of Register function. (An ID istheidentifier that the window uses to
retrieveinformation through the MRU service.) Thisisan exampleof code
you can add to the pfc_PreOpen event of the MDI frame window:

IF IsValid(gnv_app.inv_mru) THEN
gnv_app.inv_mru.of Register ("myapp")
END IF

Extend the pfc_ MRUProcess event in each window that uses MRU
processing, adding codeto open the window or sheet passing the necessary
arguments (be sureto add similar code to the frame window if you want to
specify MRU items on the frame menu):

Window lw_ frame, lw window
n_cst_menu lnv_menu
n_cst_mruattrib lnv_mruattrib

// Check parameters.
IF IsNull(ai_ row) THEN
Return -1
END IF
IF NOT IsValid(gnv_app.inv_mru) THEN
Return -1
END IF
// Retrieve row from DataStore.
gnv_app.inv_mru.of GetItem &
(ai_row, 1lnv mruattrib)
// Get the MDI frame, if necessary.
Inv_menu.of GetMDIFrame (this.menuid, 1lw_ frame)
OpenSheet (1lw_window, &
Inv _mruattrib.is classname, lw_frame)
Return 1

Performing other actions in the pfc_MRUProcess event
To see other types of processing you can performin the pfc_ MRUProcess

event, see the commentsin the pfc_w_master pfc_ MRUProcess event.

Extend the pfc_PreMRUSave event in each window that uses the MRU
service. In this event, populate the n_cst_mruattrib object with the ID,
classname, key, item text, and MicroHelp to be saved:

anv_mruattrib.is id = "myapp"
anv_mruattrib.is classname = this.ClassName ()
anv_mruattrib.is menuitemname = this.Title

anv_mruattrib.is menuitemkey = this.ClassName ()

PowerBuilder

CHAPTER 4 Using PFC Services

anv_mruattrib.is menuitemmhelp = &
"Opens " + this.Title
Return 1

Extend the pfc_ MRURestore event in each window that uses the MRU
service. Inthisevent, set the ID of the information you want to display on
the menu:

If IsValid(gnv_app.inv_mru) Then
Return gnv_app.inv_mru.of Restore("myapp", This)
End If

Call the pfc_ MRUSave event to save MRU information. You can call this
event when the window opens, when information is saved, or when the
window closes (this example is from the pfc_PreOpen event):

this.Event pfc MRUSave ()

Error message service

The error message service provides many features for displaying and logging
your application’s error messages. You can display messagesin either the
PowerBuilder MessageBox or in the PFC w_message dial og box. Both display
options offer the following features:

Overview

PFC Library User’s Guide

Message logging Message logging to afile, including multiplatform
support. PFC automatically logs messages whose severity is greater than
a specified level

MAPI support Automatic error notification viae-mail (MAPI-

compliant e-mail systems only). PFC automatically sends e-mail
notification for messages whose severity is greater than a specified level

Message database Accesstoadatabase of predefined messages (which
can reside in either a database or afile). Predefined messages provide
standardization of message text, elimination of duplicate messages, and
ease of localization

Symbolic parameter replacement Messages can have arguments that
are replaced at execution time

Unattended option Messages arelogged (or e-mailed) but do not
display

57

Application services

Usage

58

If you use the w_message dialog box, you have additional options:

« Userinput and print buttons The user can print messages and can
optionally add comments (thisis especially useful when logging messages
and when using the automatic e-mail notification feature)

« Automatic close Thew_message dialog box will close automatically
after a specified number of seconds

W_message bitmaps
If you use the w_message dialog box, the bitmaps it uses must be available at
execution time.

Use the error service to handle al of your application’s message and error
handling. If you are keeping messages in a database, you can either use the
messages tables in PFC.DB or pipeit to your application’s database.

Using the messages table o
In most cases you should copy the messages table to your application’s

database. This table contains predefined PFC error messages as well as those
that you define.

To use the error message service:

1 Createaninstanceof n_cst_error by calling the n_cst_appmanager
of_SetError function (this example isfrom an n_cst_appmanager
pfc_Open event):

this.of SetError (TRUE)
2 Specify the error message source:
« If thesourceisafile, cal the following function:

this.inv_error.of SetPredefinedSource &
("c:\eisapp\eiserr.txt")

» If the source is adatabase, call the following function:

this.inv _error.of SetPredefinedSource &
(itr_ error)

PowerBuilder

CHAPTER 4 Using PFC Services

The error message source .)
When using afile as the error message source, the file must contain all

rowsfound in the PFC.DB messages table; columns must be delimited by
tabs.

PFC uses predefined messagesin certain situations. If you enablethe error
message service and receive message display errors, make sure the error
message source has been established correctly.

Additional user-defined messages must conform to the format of the
messages table (also used by thed_definedmessages DataWindow object).

3 (Optional) Specify the name of the log file (to disable logging, call
of Setl ogFile passing an empty string):

this.inv_error.of SetLogFile &
("c:\workingdir\errlog.txt")

4 (Optional) Specify the user ID (used in message logging):

this.inv_error.of SetUser &
(this.of GetUserID())

5 (Optional) Specify the types of messages for which the error service will
provide automatic notification and logging:

this.inv_error.of SetNotifySeverity (5)
this.inv_error.of SetLogSeverity (4)

6 (Optiona) If your application uses the error service's automatic
notification feature, specify the current user’s e-mail 1D and password.
Also specify the e-mail IDs of the usersto be notified automatically. This
example assumes a mechanism for storing e-mail IDs and user passwords.

this.inv_error.of SetNotifyConnection &
(ims_mailsess)
this.inv_error.of SetNotifyWho(is autonotify)

N_cst_appmanager pfc_Open
Thestepslisted abovecanall becodedinthen_cst_appmanager pfc_Open
event.

PFC Library User’s Guide 59

Application services

Security service

Overview

Usage

60

7 Inyour application error checking, call theof Message functionto display
messages, with optional logging and natification. The of Message
function allowsyou to either use the message database or specify message
text dynamically. This example uses the message database:

gnv_app.inv_error.of Message &
("EIS0210")

To use symbolic parameters (predefined messages only)

1 Define messages in the messages table. Type % to mark the places to be
replaced at runtime with symbolic parameters. For example:

EIS1030 Unable to find the file % in %
2 Create an array of replacement arguments:
String 1s parms|[]
ls_parms[1] = "logfile.txt"
ls parms[2] = "c:\windows\system"
3 Cadl of_Message, passing the array:
gnv_app.inv_error.of Message ("EIS1030", ls_ parms)

PFC displays the message, replacing the first % with the first element in
thels parms array and the second % with the second element in the
Is parmsarray.

PFC’s security feature can handle many of your application’s security needs. It
includes administrative components and a runtime security object,
n_cst_security.

To use the PFC security system, you must first define users and groups,
associate them with windows, menus, user objects, and controls, and then add
code to your application.

To use the security service:
1 Define users and groups, as described in Chapter 7, “PFC Utilities”.

2 Define security for your application’s window controls, menus, user
objects, and controls, as described in Chapter 7, “PFC Utilities”.

PowerBuilder

CHAPTER 4 Using PFC Services

3 Createthesecurity object by callingthen cst_appmanager of _SetSecurity
function (this exampleisfrom an n_cst_appmanager pfc_Open event):

this.of SetSecurity (TRUE)

4 Establish a Transaction object for the security database. This example
assumes an itr_sec instance variable of typen_tr on n_cst_appmanager:

itr sec = CREATE n_tr
CONNECT using itr_sec;

5 Initialize the security object by calling the of _InitSecurity function:

this.inv_security.of InitSecurity &
(itr_sec, "EISAPP", &
gnv_app.of GetUserID(), "Default")

N_cst_appmanager pfc_Open
Thestepslisted abovecanall becodedinthen_cst_appmanager pfc_Open
event.

6 Disconnect from the database and destroy the Transaction object when the
application closes. Thisexample might becodedinthen_cst_appmanager
pfc_Close event:

DISCONNECT using itr sec;
Destroy itr sec

7 Inthe Open or pfc_PreOpen events of windows for which you want to
apply security, call the of _SetSecurity function:

IF NOT &
gnv_app.inv_security.of SetSecurity(this) THEN
MessageBox ("Security", &
"Unable to set security")
Close (this)
END IF

Other places to call of_SetSecurity))
You might also call the n_cst_security of SetSecurity function from the

Constructor event of a DataWindow, visual user object, or menu for which
you want to implement security.

PFC Library User’s Guide 61

Application services

Transaction registration service

Overview The transaction registration service tracks the transaction objects used by your
application. This serviceis for use with Transaction objects based on n_tr.

PFC enables transaction registration through the n_cst_trregistration user
object.

Usage Usethis service to keep track of transactions when your application uses more
than one transaction.

When your application closes, this object automatically destroys all open
registered transactions. Set then_trib_autorollback instancevariableto TRUE
to cause closing transactions to COMMIT; set ib_autorollback to FALSE to
cause a ROLLBACK. You set thisinstance variable with the n_tr

of _SetAutoRollback function.

v To enable the transaction registration service:
e Cdl then_cst_appmanager of _SetTrRegistration function:
gnv_app.of SetTrRegistration (TRUE)
The application manager destroys the transaction registration service
automatically when the application closes.

v To register atransaction:
e Cdl then_cst_trregistration of Register function:

gnv_app.inv_trregistration.of Register (SQLCA)
v To control whether the transaction registration service commits or rolls
back open transactions when it is destroyed:
e Cadl then_tr of SetAutoRollback function:
SQLCA.of SetAutoRollback (TRUE)

If you set autorollback to TRUE and the object is still connected, the
service rolls back open transactions when it is destroyed; if you set it to
FAL SE, it commits open transactions. However, to ensure that
transactions close properly, your application should issue COMMITSs,
ROLLBACKS, and DISCONNECTs explicitly.

v To establish a transaction name:
e Call then_tr of_SetName function:

itr security.of SetName ("Security")

62 PowerBuilder

CHAPTER 4 Using PFC Services

\

To close all transactions explicitly:

1

In the application manager pfc_Close event (or some other appropriate
place), call then_cst_trregistration of GetRegistered function:

n tr ltr trans/[]
Integer 1li max, 1li count

1i max = &
this.inv trregistration.of GetRegistered &
(ltr trans)

Loop through the n_tr array, committing and destroying transactions as
appropriate:

FOR 1li count = 1 to 1li max
COMMIT using ltr trans[li count];
DESTROY ltr trans[li count]

NEXT

DataWindow services

Most production-strength PowerBuilder applications make intense use of
Datawindow controls. PFC provides awide variety of Datawindow services
that you can useto add production-strength featuresto an application. Many of
these services require little or no coding on your part.

Accessing
DataWindow services

PFC Library User’s Guide

PFC implements DatawWindow services through a set of custom class user
objects that descend from a common ancestor. The ancestor object contains
functions, events, and instance variablesthat are required by multiple services.
Each Datawindow service contains additional functions, events, and instance
variables.

To access DataWindow services, you create DataWindow objects that are
based on the u_dw user object. U_dw contains:

Functions to enable and disable DataWindow services

Instance variables that allow you to reference each service's functions,
events, and instance variables (thistype of instance variableis called a
reference variable)

63

DataWindow services

Enabling DataWindow
services

* Precoded events and user events that call the DataWindow service's
functions and events

« Empty user eventsto which you add code to perform application-specific
processing

Use u_dw for all Datawindow controls
Use the u_dw user object for all of your application’s DataWindow controls.

Each Datawindow control enables only the required DataWindow services.
This minimizes application overhead.

Thefollowing table lists DataWindow services and how they are implemented:

DataWindow service Implementation

Basic Datawindow service (ancestor for n_cst_dwsrv

all other services)

Drop-down search service n_cst_dwsrv_dropdownsearch
Filter service n_cst_dwsrv_filter

Find and replace service n_cst_dwsrv_find
Linkage service n_cst_dwsrv_linkage
Multitable update service n_cst_dwsrv_multitable
Print preview service n_cst_dwsrv_printpreview
Datawindow property service n_cst_dwsrv_property
Querymode service n_cst_dwsrv_querymode
Reporting service n_cst_dwsrv_report
Required column service n_cst_dwsrv_regcolumn
Datawindow resize service n_cst_dwsrv_resize

Row management service n_cst_dwsrv_rowmanager
Row selection service n_cst_dwsrv_rowselection
Sort service n_cst_dwsrv_sort

DataWindow services ancestor

Overview

64

The DataWindow services ancestor contains instance variables, events, and
functions for use by all other DataWindow services. You can use many of the
ancestor functions too.

PFC enables basic Datawindow servicesthrough the n_cst_dwsrv user object.

PowerBuilder

CHAPTER 4 Using PFC Services

Usage

PFC Library User’s Guide

DataStore services

This serviceis available to the n_ds DataStore viathe n_cst_dssrv user object.

Use this service for general Datawindow functionality, including:
e Getting and setting DataWindow information
* Asanalternative to the Modify and Describe PowerScript functions

* Datawindow service defaults

Ancestor functions are available in the descendants
Because the n_cst_dwsrv user object isthe ancestor for all DatawWindow

services, its functions are also avail able through any of the descendent
Datawindow service user objects.

To enable basic DataWindow services:
e Cadl theu_dw of_SetBase function:

dw_emplist.of SetBase (TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

To access DataWindow information:

e Cadl oneof thefollowing n_cst_dwsrv functions:

Function When to call
of_Describe To access information on DataWindow attributes and
columns

of _GetHeaderName | To determine the header name for a specified
Datawindow column

of _GetHeight To determine acolumn’s height

of _GetObjects To access the names of the objects within a
Datawindow

of _GetWidth To determine a column’s width

of Getltem To retrieve data for a Datawindow column, regardliess

of_GetltemAny of datatype

65

DataWindow services

66

v To set DataWindow data:

» Cdl oneof thefollowing n_cst_dwsrv functions:

Function When to call

of _Modify To set DataWindow attributes and columns

of_Setltem To set or modify the display value for a Datawindow column,

regardless of datatype

v To refresh all DropDownDataWindows in a DataWindow:
e Cdl the of_PopulateDDDW:s function:

Integer 1li return

1li return = &

dw_emplist.inv_base.of PopulateDDDWs ()
gnv_app.of GetFrame() .SetMicroHelp &
(String(li_return) + " DDDW columns

refreshed")

v To access DataWindow service defaults:

» Cdl oneof thefollowing n_cst_dwsrv functions:

Function

When to call

of_GetColumnDisplayName

To determine when DataWindow services
display when referring to columns

of _GetColumnNameStyle

To determine what DataWindow services
display when referring to columns

of _GetDefaultHeaderSuffix

To determine the default DataWindow
suffix for header columns

of _GetDisplayltem
of _GetDisplayUnits

To determine the text displayed when
displaying CloseQuery message

of _SetColumnDisplayNameStyle

To specify what DatawWindow services
display when referring to columns:

* Datawindow column names
» Database column names
» DataWindow column header names

of_SetDefaultHeaderSuffix

To specify the default DataWindow suffix
for header columns (_t is the default)

of_SetDisplayltem
of_SetDisplayUnits

To specify the text displayed when
displaying CloseQuery message

PowerBuilder

CHAPTER 4 Using PFC Services

Drop-down DataWindow search service

Overview

Usage

Filter service

Overview

PFC Library User’s Guide

The PFC drop-down Datawindow search service automatically scrolls
drop-down DatawWindows to items that begin with the typed letter. For
example, when a user types Sin adrop-down DataWindow, this service
automatically scrollsthelist to thefirst item that beginswith S. If the user then
types A, the service scrollsto thefirst item that beginswith A.

PFC enabl es the drop-down Datawindow search service through the
n_cst_dwsrv_dropdownsearch user object.

You establish drop-down Datawindow search functionality by enabling the
service and adding code to two Datawindow events.

To enable the drop-down DataWindow search service:
1 Call theu _dw of SetDropDownSearch function:

this.of SetDropDownSearch (TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

2 Inthe Datawindow control’s EditChanged event, add a call to the
n_cst_dropdownsearch pfc_EditChanged event:

this.inv_dropdownsearch.Event pfc EditChanged &
(row, dwo, data)

3 Inthe Datawindow control’s ItemFocusChanged event, add a call to the
n_cst_dwsrv_dropdownsearch pfc_ItemFocusChanged event:

this.inv_dropdownsearch.Event &
pfc_ItemFocusChanged (row, dwo)

4 Specify the DropDownDataWindow column for which the serviceis
enabled by calling the of _AddColumn function:

this.inv_dropdownsearch.of AddColumn ("dept_ id")

The PFC filter service allows you to provide easy-to-use filter capabilitiesina
Datawindow.

Use this service to add filter capabilities to your application.

PFC enables thefilter service through then_cst_dwsrv_filter user object.

67

DataWindow services

Usage Thefilter service displays Filter dialog boxes automatically. All youdois
enable the service and specify thefilter style you want. You can choose among
three styles of filter dialog boxes:

e Default PowerBuilder Filter dialog box:

Specify Filter [%]
[Al ok |
Werify |
Functions: Calumns: ﬂl
< > abs) ﬂ id
J J azcf g call_date
avgl Ha for all] caller_name
ﬂ ﬂ bitrnap [=] call_notes
ceilingl %]
caze| ® when a ther
char[%]
ﬂ J cozl # 1 LI

e Drop-down list box interface (w_filtersimple):

Filter [%]
r— Original Filker Criteria
— Mew Filter Criteria
Column Operator “alue Logical
(- m—|) s N
Delete
K| b
QK I Cancel | Help

68 PowerBuilder

CHAPTER 4 Using PFC Services

e Tabbed interface (w_filterextended):
Filter [%]

— Eilter expression
Werify |

— Build filter with

Functions | Eolumnsl Dperatorsl Valuesl

D ate Tim
Form

M athemnatic
Other

I —
 Synta

Aszc| <string>]

Converts the first character of a string to itz ASCI integer value.

QK I Cancel Help

v To enable the filter service:

e Cal theu_dw of_SetFilter function, set the Transaction object, and
specify that Filter dialog boxes use DatawWindow column header names:

dw_emp.of SetFilter (TRUE)

dw_emp.of SetTransObject (SQLCA)

dw emp.inv_ filter.of SetColumnDisplayNameStyle &
(dw_emp.inv_ filter.HEADER)

Filtering by column header
If you filter by column header, make sure that all columns added to the

Datawindow have headers, and that these conform to the naming scheme
for headers. The default naming scheme uses the suffix _t, but you can
change this by calling the of _SetDefaultHeaderSuffix function.

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To specify the filter style:
e Cadl theof SetStyle function, specifying the Filter dialog box type:

dw_emplist.inv_filter.of SetStyle &
(dw_emp.inv filter.SIMPLE)

PFC Library User’s Guide 69

DataWindow services

To display the filter dialog box:
e Cdl the pfc_FilterDIg event:
dw_emplist.inv_filter.Event pfc_ FilterDlg()

You do not typically call this event. In most cases, the user displays the
Filter dialog box by selecting View>Filter from the menu bar.

Find and replace service

Overview

Usage

70

The PFC find service allows you to add find and replace functionality to your
application’s DataWindows.

PFC enables the find and replace service through the n_cst_dwsrv_find user
object.

You can use the find service to add find and replace functionality to
Datawindows, displaying either thew_find dialog box or thew_replacedialog
box. These boxes display automatically if you' ve enabled the find service and
the user selects Edit>Find or Edit>Replace from the menu bar of a menu that
descends from PFC's m_master menu.

To enable the find service:
e Cdl theu_dw of SetFind function:

dw_emplist.of SetFind (TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

To display the w_find dialog box:
e Cdl theu_dw pfc_FindDIg event:

dw_emplist.Event pfc FindDlg()

You do not typically call this event. In most cases, the user displays the
w_find dialog box by selecting Edit>Find from the menu bar.

To display the w_replace dialog box:
e Cdl theu_dw pfc_ReplaceDlg event:
dw_emplist.Event pfc ReplaceDlg()

You do not typically call this event. In most cases, the user displays the
w_replace dialog box by selecting Edit>Replace from the menu bar.

PowerBuilder

CHAPTER 4 Using PFC Services

Linkage service

Overview

Usage

PFC Library User’s Guide

The PFC linkage service helps you to create master/detail windows and other
types of windows that require coordinated processing.

The linkage service contains the following features:

« Linkage style Controlswhether detail DataWindows retrieve rows,
filter rows, or scroll to the appropriate row

« Update style Controls how the linkage service updates DataWindows
(top-down, bottom-up, top-down then bottom-up, bottom-up then top-
down, or a developer-specified custom update)

« Confirm on row change When the master changes rows, this option
displays a confirmation dialog if modifications made to detail
Datawindows will be lost

» Confirm on delete Displaysaconfirmation dialog whentheuser deletes
rows

» Cascading key changes The linkage service automatically updates
detail Datawindows when you change a key value on the master

« Delete style When you delete a master row, this option specifies
whether the linkage service deletes detail rows, discards detail rows, or
leaves them alone

« Extended update Allowsyou to integrate other controls (such as
ListViews, TreeViews, and DataStores) into the default save process

The linkage service is completed integrated with n_cst_luw and with the
w_master pfc_Save process.

Sharing data between DataWindows)
You can use the PowerScript ShareData function to share data between master

and detail Datawindows. However, do not insert rows into the detail
Datawindow when sharing data.

PFC enables the linkage service through the n_cst_dwsrv_linkage user object.

You can use the linkage service to coordinate any type of processing among
Datawindows. However, the most common useisfor master/detail processing.

71

DataWindow services

72

To enable the linkage service:

Call the u_dw of _Setl inkage function:
dw_emplist.of SetLinkage (TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

To use the linkage service to coordinate Master/Detail processing:

1

Enablethelinkage service for both the master and detail DataWindows by
calling the u_dw of_SetlL inkage function, once for each DataWindow:

dw _master.of SetLinkage (TRUE)
dw_detail.of SetLinkage (TRUE)

Call the u_dw of _SetTransObject function to establish the Transaction
object for the master and detail Datawindows:

dw_master.inv_linkage.of SetTransObject (SQLCA)

Link the detail to the master by calling the of _SetMaster function in the
detail Datawindow:

dw detail.inv_linkage.of SetMaster (dw master)
Register the related columns by calling the of _Register function:

dw detail.inv_linkage.of Register &
(n emp_idu , n emp_idn)

(Optional) Specify that the service updates DataWindows from the bottom
of the linkage chain on up (the default is to update top down):

dw _detail.inv linkage.of SetUpdateStyle &
(dw_detail.inv_ linkage.BOTTOMUP)

Establish the action taken by the detail when arow changesin the master
by calling the of SetStyle function.

This example specifies that the detail DataWindow retrieves arow
whenever the master changes:

dw detail.inv_linkage.of SetStyle &
(dw_detail.inv linkage.RETRIEVE)

Call the master DataWindow’s of Retrieve function:

IF dw _master.of Retrieve() = -1 THEN
MessageBox ("Error", "Retrieve error")

PowerBuilder

CHAPTER 4 Using PFC Services

PFC Library User’s Guide

ELSE
dw master.SetFocus()
END IF

Previous steps can be in one script.)
You can code the previous steps in a single event, such as the window

Open event.

8 Add retrieval logic to the master Datawindow’s pfc_Retrieve event:

Return this.Retrieve()

Retrieving rows
If thelinkage service refreshes detail rowsviaretrieval, you only need to code

a Retrieve function for the master DataWindow. With the filter and scroll
options, you must also code Retrieve functions in detail DatawWindows.

To enable confirm on row change (retrieval style only):

1 Call the of_SetUpdateOnRowChange function for the detail
Datawindow:

dw_detail.inv_linkage.of SetUpdateOnRowChange (TRUE)

2 Cadl the of _SetConfirmOnRowChange function for the detail
Datawindow:

dw detail.inv_linkage.of SetConfirmOnRowChange &
(TRUE)

To enable confirm on delete:

1 Cadll the of _SetUpdateOnRowChange function for the detail
Datawindow:

dw detail.inv_linkage.of SetUpdateOnRowChange (TRUE)
2 Call the of_SetConfirmOnDelete function for the detail Datawindow:
dw detail.inv_linkage.of SetConfirmOnDelete (TRUE)

To enable cascading key changes:

e Cal theof_SetSyncOnKeyChange function for every Datawindow in the
linkage chain:

dw master.inv_linkage.of SetSyncOnKeyChange (TRUE)

dw _detail.inv_linkage.of SetSyncOnKeyChange (TRUE)

73

DataWindow services

v To specify deletion style:

» Cdl the of_SetDeleteStyle function for all master Datawindows in the
linkage chain:

dw_master.inv_linkage.of SetDeleteStyle &

(dw_cust.inv_linkage.DISCARD_ROWS)

v To enable extended update:

e Cdl the of_SetOtherSaveObjects function to add other controls to the
default save process:

PowerObject 1lpo objs|[]

// This example adds the 1lv_salesinfo ListView
// to the save process.

lpo objs[1] = 1lv_salesinfo
dw_master.inv_linkage.of SetOtherSaveObjects &
(lpo_objs)

Multitable update service

Overview The PFC multitable update service makes it easy for you to update
Datawindows containing columns from multiple tables.

PFC enables multitable update services through the n_cst_dwsrv_multitable
user object.

DataStore services) .
This serviceisavailable to then_ds DataStore viathe n_cst_dssrv_multitable

user object.

Usage Usethis service when you need to update rows for a DatawWindow that contains
data from more than one table. When you call thew_master pfc_Save event,
PFC updates all specified tablesin all Datawindows on the window.

v To enable the multitable update service:
e Call theu_dw of SetMultiTable function:
dw _emplist.of SetMultiTable (TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

74 PowerBuilder

CHAPTER 4 Using PFC Services

v To specify the tables to be updated:
e Call the of_Register function once for each table to be updated in a

multitable update:
String 1s projcols[] = &
{ "proj_id" }
String 1s taskcols[] = &

{"proj_id", "task_id"}

dw_project.inv_multitable.of Register &
("project", ls projcols)

dw_project.inv_multitable.of Register &
("task", ls_ taskcols)

v (Optional) To update a DataWindow that contains data from multiple
database tables:

e Cal thew_master pfc_Save event:

Integer 1li return

1li_return = w_sheet.Event pfc_Save ()

Print preview service

Overview The PFC print preview service enables you to provide Datawindow print
preview capabilities:

e Print preview
« First page, next page, previous page, last page
e Zoom

Menusthat descend from PFC’sm_master menu have automatic accessto this
functionality.

PFC enables the print preview service through the n_cst_dwsrv_printpreview
user object.

DataStore services)
This serviceis available to the n_ds DataStore via the

n_cst_dssrv_printpreview user object.

PFC Library User’s Guide 75

DataWindow services

Usage

Use this service to provide print preview capabilitiesin your applications.
Usersenter print preview mode by selecting File>Print Preview from the menu

bar.

To enable the print preview service:

Call the u_dw of SetPrintPreview function:
dw_emplist.of SetPrintPreview (TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

DataWindow properties service

Overview

Usage

76

The Datawindow properties service enables display of the Datawindow
Properties window, which allows you to:

Selectively enable and disable DataWindow services
View the PFC syntax for the selected service

Access and modify Datawindow properties interactively, including:

Datawindow buffers

Row and column status

Satistics

Properties of all objects on the DataWindow object

See “DataWindow Properties window” on page 207.

Use this service to enable display of the DataWindow Properties window.

To enable the DataWindow properties service:

1

2

Call the u_dw of SetProperty function:
dw_emplist.of SetProperty (TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

When the Datawindow displays, right-click and select Datawindow
Properties.

The Datawindow Properties window displays.

PowerBuilder

CHAPTER 4 Using PFC Services

Query mode service

Overview

Usage

PFC Library User’s Guide

The PFC query mode service makesit easier for you to provide query mode
capabilitiesin applications. The service also helps users to understand and use
query mode.

While in query mode, users can right-click to display a pop-up menu with
options that display columns, operators, and values.

For complete information on DataWindow query mode, see the Power Builder
User’s Guide.

PFC enablesthe query mode servicethroughthen cst_dwsrv_querymode user
object.

Use this service for the following:
e Beginning and ending query mode
e Specifying the columns eligible for query mode
e Saving queriesto afile and loading previously saved queries
To enable the query mode service:
e Cadl theu_dw of_SetQuerymode function:
dw_emplist.of SetQuerymode (TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

To begin query mode:
e Cal the of _SetEnabled function, passing TRUE:

dw_emplist.inv_querymode.of SetEnabled (TRUE)

To end query mode:
e Cal theof SetEnabled function, passing FAL SE:

dw_emplist.inv_querymode.of SetEnabled (FALSE)

77

DataWindow services

v To specify columns eligible for query mode:
» Cdl the of_SetQueryCols function, passing an array listing the columns
eligible for query mode:
String 1s cols/[]
ls cols[1l] = "emp dept id"

ls cols[2] = "emp_ id"
dw_emplist.inv_querymode.of SetQueryCols(ls_cols)

When you call of_SetEnabled, the query mode service protects ineligible
columns.

v To save a query to afile:
1 Start query mode by calling of _SetEnabled (TRUE).
2 Allow the user to specify query mode criteria.
3 Call the of_Save function.
This function displays a dialog box that prompts the user for the name of

the file in which to save the query.

v Toload a query from afile:
e Cdl theof Load function.

Thisfunction displays adialog box that prompts the user to select asaved
query from disk. If the user selects afile, thisfunction usesthe selectedfile
to determine selection criteria

Reporting service

Overview The PFC reporting service allows you to provide enhanced viewing and
printing capabilities in an application’s DataWindows.

Many of this service's functions provide the option of either executing the
Datawindow Modify function or returning Modify syntax for use as input to
your own Modify function. If you code more than two consecutive report
service functions, consider returning the Modify syntax, concatenating the
strings and issuing the Modify function from within your own code.

78 PowerBuilder

CHAPTER 4 Using PFC Services

Usage

PFC Library User’s Guide

DataWindows must use PBUs or pixels

To use this service, the DataWindow object must use PBUs or pixels as the

Datawindow Unit. It does not work with DataWindows that use thousandths
of an inch or thousandths of a centimeter as the DataWindow Unit.

PFC enables reporting services through the n_cst_dwsrv_report user object.

DataStore services

Thisserviceisavailableto then_ds DataStore viathe n_cst_dssrv_report user

object.

Use this service for the following:

¢ Adding itemsto a DataWindow

« Creating a composite DatawWindow out of one or more individual
Datawindows (allowing multiple Datawindowsto print asasingle report)

e Formatting and printing

e Setting background, color, and border

e Zooming a Datawindow relativeto its current size

To enable the reporting service:
e Cal theu_dw of_SetReport function:

dw_emplist.of SetReport (TRUE)

U_dw destroys the service automatically when the DataWindow is

destroyed.

To add items to a DataWindow:

e Cadl oneof thefollowing n_cst_dwsrv_report functions:

Function What it does

of _AddCompute Adds a computed column
of _AddLine Addsaline

of _AddPicture Adds a bitmap

of AddText Adds text

79

DataWindow services

v To create a composite DataWindow:

1 Cadll the of_CreateComposite function, passing information on the
Datawindows to be included in the composite:

String ls dws[], 1ls trailfooter[]
String 1s _slidel 1

String ls return
Integer 1i return
Boolean 1b vertical
Border lbo border|[]

lb vertical = TRUE

ls dws[1] = "d _employee"

ls dws[2] = "d benefits"

ls trailfooter[1l] = "No"

ls trailfooter([2] = "Yes"
ls slide[1l] = "AllAbove"

ls slide[2] = "AllAbove"

lbo border[1l] = Lowered!

lbo border[2] = Lowered!

1i Return = &
dw_composite.inv_report.of CreateComposite &
(ls_dws, 1lb_vertical, ls_trailfooter, &
ls _slide, lbo border)

IF 1i Return = 1 THEN
dw_composite.SetTransObject (SQLCA)
dw_composite.Event pfc Retrieve()

END IF

2 Print or display the composite DatawWindow as appropriate.

dw_composite.inv_report.of PrintReport &
(TRUE, FALSE)

v To print a DataWindow:
e Cdl the of_PrintReport function.

80 PowerBuilder

CHAPTER 4 Using PFC Services

\

\Y

To set defaults, color, and border:
e Cal oneof thefollowing n_cst_dwsrv_report functions:

Function What it does

of _SetDefaultBackColor Modifies Datawindow defaults
of_SetDefaultBorder

of _SetDefaultCharset
of _SetDefaultColor

of _SetDefaultFontFace
of _SetDefaultFontSize

of _SetBorder Modifies the border for one or more objectsin
aDatawindow

of_SetColor Modifies the color and background color (if
applicable) of one or more objectsina
Datawindow

To control DataWindow zoom:
e Cadl the of_SetRelativeZzoom function.

Zoom is relative to the current display)
Of _SetRelativeZzoom modifies zoom percentage relative to the current

zoom percentage. For example, if aDataWindow is currently displayed at
80% and you specify of SetRelativeZoom (50), the function changes the
zoom percentage to 40%.

Required column service

Overview

Usage

PFC Library User’s Guide

The PFC required column service. This service enables and disables default
Datawindow processing for required fields. This makes it easier for your
application to handle interdependent fields within a DatawWindow.

This service applies only to DataWindow columns that use the nilisnull
property. For example, EditMasks don’t have this property, so the required
column service doesn't apply to edit masks.

PFC enablesthe required column service through then_cst_dwsrv_reqcolumn
user object.

Datawindow required fields processing can interfere with the user-directed
interface offered by aGUI application. The required column service allowsyou
to defer required fields processing until the user completes data entry.

81

DataWindow services

The serviceallowsyou to specify columnsfor which PowerBuilder should still
perform required fields processing.

Required fields checking
When you call the window’s pfc_Save event, it automatically performs

required fields checking before updating the database.

To enable the required column service:
e Cdl theu_dw of _SetRegColumn function:
dw_emplist.of SetRegColumn (TRUE)
U_dw destroys the service automatically when the DataWindow is
destroyed.

To override the service for certain columns:

e Cadll the of_RegisterSkipColumn to specify which columns should retain
standard PowerBuilder required fields processing:

dw _emplist.inv regcolumn.of RegisterSkipColumn &
("dept_id")

Row management service

Overview

Usage

82

The PFC row management service allows you to insert and delete rows. The
row management service also provides a function to undo row deletions.

PFC enabl es the row management service through the
n_cst_dwsrv_rowmanager user object.

Use this service for the following:

e Adding an empty row to the end of the Datawindow
e Inserting an empty row between two existing rows

» Deleting one or more rows

» Displaying adialog box alowing you to restore deleted rows

PowerBuilder

CHAPTER 4 Using PFC Services

v To enable the row management service:
e Call theu_dw of_SetRowManager function:

dw_emplist.of SetRowManager (TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To add an empty row to the end of the DataWindow:
e Cal the pfc_AddRow event:

Long 11 return

11 return = &

dw_emplist.inv rowmanager.Event pfc AddRow ()
IF 11 return = -1 THEN

MessageBox ("Error", "Error adding empty row")
END IF

PFC calls this event automatically when the user selects Add from the
m_dw pop-up menu.

v To insert an empty row between two existing rows:
e Cadl the pfc_InsertRow event.
This example inserts before the current row:

Long 11 return

11 return = dw_emplist.inv_rowmanager.Event &
pfc_InsertRow ()
IF 11 return = -1 THEN
MessageBox ("Error", "Insert error")
END IF

PFC calls this event automatically when the user selects Insert from the
m_dw pop-up menu.

v To delete rows:
e Cadl thepfc_DeleteRow event.
This example deletes the current row or al selected rows:

Long 11 return

11 return = &
dw_emplist.inv rowmanager.pfc DeleteRow ()

PFC Library User’s Guide 83

DataWindow services

IF 11 return = -1 THEN
MessageBox ("Error", "Deletion error")
END IF

PFC calls this event automatically when the user selects Delete from the
m_dw pop-up menu.

To allow usersto select multiple rows, use the row selection service.
v Torestore deleted rows:
e Cadll the pfc_RestoreRow event.

This event callsthe of_UnDelete function, which displays the
w_restorerow dialog box, allowing usersto restore deleted rows:

Cancel |
SElEch Al
Irivert Selection

Help

Heslole

[

ol

Row selection service

Overview The PFC row selection service allows you to provide single-, multi-, and
extended sl ection capabilities in a DataWindow.

PFC enables the row selection service through the n_cst_dwsrv_rowselection
user object.

Usage Therow selection service handlesall row selection automatically. All you have
to dois enable the service and specify the desired selection style:

« Single-row selection Handlesrow selection when your Datawindow
allows one row to be selected at atime.

« Multirow selection Handles row selection by allowing your runtime
users to select multiple rows with single clicks. These rows can be
contiguous or noncontiguous.

When multirow selection is enabled, runtime userstoggle arow’s selected
state by clicking it. This capability issimilar to alist box’s MultiSelect
attribute.

84 PowerBuilder

CHAPTER 4 Using PFC Services

\

\

» Extended selection Handlesrow selection by allowing your runtime
users to select multiple rows with sHiFT+click and cTRL+click.

When extended selection is enabled, runtime users select multiple
contiguous rows using sHIFT+click and noncontiguous rows using
CcTRL+click. This capability is similar to alist box’s ExtendedSelect
attribute.

To enable the row selection service:
e Cadl theu_dw of_SetRowSelect function:;
dw_emplist.of SetRowSelect (TRUE)
U_dw destroys the service automatically when the DataWindow is
destroyed.
To specify the row selection style:

e Cal theof SetStyle function, passing the selection style you want. This
example enables extended selection:

dw_emplist.inv_rowselect.of SetStyle &
(dw_emplist.inv rowselect.EXTENDED)

DataWindow resize service

Overview

Usage

PFC Library User’s Guide

The Datawindow resize service allows you to resize the columnsin a
Datawindow control when the user resizes the window.

Use this service to add resize capabilities to the columns that display in a
Datawindow.

PFC enables the Datawindow resize service through the n_cst_dwsrv_resize
user object.

You use the DataWindow resize service to enable resizing of the objects
displayed in a DataWindow abject (so that when the user resizes the window,
this service resizes DataWindow contents automatically).

Presentation styles .])) .)
You cannot use the DatawWindow resize service with DataWindow objects that

have the Composite or RichTextEdit presentation style.

85

DataWindow services

86

This service provides two resizing options:

For simple resizing Call the of _Register function passing
n_cst_dwsrv_resize constants, such as FIXEDBOTTOM

For total control over resizing Implement weighted resize by calling
the of _Register function with explicit specifications for moving and
scaling

To enable the DataWindow resize service:

1

Call the u_dw of _SetResize function, set the Transaction object, and
specify that Sort dialog boxes use DatawWindow column header names:

dw_emp.of SetResize (TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

(Optional) Specify the Datawindow control’s original size by calling the
of _SetOrigSize function. You call thisfunction if an MDI application
opens MDI sheets with an enumeration other than Original!:

this.inv _resize.of SetOrigSize &
(this.width, this.height)

(Optional) Call the of _SetMinSize function to specify aminimum size
below which the Datawindow resize service no longer resizes
DataWindow contents:

this.inv resize.of SetMinSize &
(this.width-50, this.height-100)

Specify the columns to be resized and how they should be resized by
calling the of _Register function:

this.inv resize.of Register("emp fname", &
0, 0, 50, 50)
this.inv _resize.of Register("emp_lname", &

100, 0, 50, 50)

Enable the window resize service and register the Datawindow control
(this example is from awindow Open event):

this.of SetResize (TRUE)
this.inv resize.of Register(dw_ 1, 0, 0, 100, 100)

(Optional) Call the of _UnRegister function to remove columns from the
resizelist.

PowerBuilder

CHAPTER 4 Using PFC Services

Sort service

Overview

Usage

PFC Library User’s Guide

The PFC sort service allows you to provide easy-to-use sort capabilitiesin a

Datawindow.

Use this service to add sort capabilities to your application. For example, you
might add amenu item that calls the pfc_SortDIg event.

PFC enabl es the sort service through the n_cst_dwsrv_sort user object.

The sort service displays Sort dialog boxes automatically. All you do isenable
the service and specify the sort style you want. You can choose among four

styles of sort dialog boxes:

e Default PowerBuilder Sort dialog box:
Specify Sort Columns

1] Drag and Drop items.
2] Double click column to edit

Source D ata

) Cancel |
Aszcending

Columns
id
call_date
caller_name
call_notes
4] | il | L

Help

Drag and drop sorting (w_sortdragdrop dialog box):

Sort

[%]
Columnz Available for Sorting Sort Calumng Azcending
call_date
call_notes
caller_name
id

Cancel Help

[DK |

87

DataWindow services

Vv

88

e Multicolumn sorting (w_sortmulti dialog box):
Sort [%]

— Sort items by

|c:a||_date |L| V' Ascending Inzert |
caller_name ¥ Ascending
Delete |

K| b
QK I Cancel | Help |

e Single-column sort (pfc_w_sortsingle dialog box):
Sort [%]

Sort items by
{l—_lv I~ Ascendng
QK I Cancel | Help |

Additionally, you can alow the user to sort by clicking on column headings
(for column header sorting, the column header object must be in the primary
header band of the Datawindow)

To enable the sort service:

e Cdl theu_dw of SetSort function and specify that Sort dialog boxes use
Datawindow column header names:

dw_emp.of SetSort (TRUE)
dw_emp.inv_sort.of SetColumnDisplayNameStyle &
(dw_emp.inv_sort.HEADER)

Sorting by column header
If you sort by column header, make sure that all columns added to the

Datawindow have headers, and that these conform to the naming scheme
for headers. The default naming scheme uses the suffix _t, but you can
change this by calling the of _SetDefaultHeaderSuffix function.

U_dw destroys the service automatically when the DataWindow is
destroyed.

PowerBuilder

CHAPTER 4 Using PFC Services

To specify whether PFC sort dialog boxes sort on display values or data
values:

e Cal theof SetUseDisplay function:

dw_emp.inv_sort.of SetUseDisplay (TRUE)

To specify the sort style:
e Cal theof SetStyle function, specifying the Sort dialog box type:

dw_emp.inv_sort.of SetStyle &
(dw_emp.inv_sort.DRAGDROP)
To display the Sort dialog box:
e Cadl theu_dw pfc_SortDIg event:

dw_emplist.Event pfc SortDlg()

You do not typically call this event. In most cases, the user displays the Sort
dialog box by selecting View>Sort from the menu bar of a menu that descends
from PFC’'sm_master menu.

Window services

PFC Library User’s Guide

PFC implements window services through:

¢ Functions, events, and instance variables coded in w_master and its
descendants

e Custom class user objects

To access window services, you create windows that descend from one of
PFC'sw_master descendants:

w_child

w_frame

w_main

W_popup

W_response

w_sheset

W_master contains:

« Functions to enable and disable window services implemented as custom
class user objects

89

Window services

» Instance variables that allow you to reference each custom class user
object’s functions, events, and instance variables (this type of instance
variable is called areference variable)

» Precoded events and user events that perform window services and call
custom class user object functions

« Empty user eventsto which you add code to perform application-specific
processing

Inherit from windows in the extension level
When using windows, always inherit from windowswith thew__ prefix (don't

inherit from windows with the pfc_ prefix). Pfc_ prefixed objects are subject
to change when you upgrade PFC versions.

The following table lists window services and how they are implemented:

Window service Implementation

Basic window service Implemented in n_cst_winsrv and as well as functions
and user eventsin PFC windows

Preference service n_cst_winsrv_preference

Sheet management n_cst_winsrv_sheetmanager

service

Status bar service n_cst_winsrv_statusbar

Basic window services

Overview

90

PFC windows include:
* Window functions
* Precoded events and user events
e Empty user events

These functions and events are available to all of your application’s windows.
PFC implements much of this functionality automatically when you use PFC
windowsin conjunction with PFC visual user objects and menus that descend
from PFC’'s m_master menu.

PowerBuilder

CHAPTER 4 Using PFC Services

Usage

PFC Library User’s Guide

\

\

Automatic CloseQuery processing
PFC window services include automatic CloseQuery processing for all

Datawindows in awindow. This processing saves all pending changes if the
user clicks Yesin the Save Changes dialog box.

If you want to implement application-specific save processing, override the
CloseQuery event in your application’swindows. (To do thisglobally, override
CloseQuery in w_master or disable CloseQuery processing by setting the
w_master ib_disableclosequery instance variable to TRUE.)

Basic PFC window functionality includes:

¢ Message router and menu integration

e Empty user events, which are triggered by PFC menu items
e Toolbar control (w_frame only)

« Automatic save processing, implemented through thelogical unit of work
service

For information on using a specific PFC window type, see the window’s
discussion in the PFC Object Reference.

To use the message router from a menu item script:

e Call the of_SendMessage menu function, passing the user event to be
called:

of SendMessage ("pfc_CheckStatus")

The of _SendM essage function passes the request to n_cst_menu

of SendMessage function, which calls the current window’'s
pfc_MessageRouter user event, which calls the specified user event
automatically.

To use the message router from within a nonmenu function or event:

e Cadl theactive window’s pfc_MessageRouter user event, passing the user
event to be called:

this.Event pfc MessageRouter ("pfc CheckStatus")

The pfc_MessageRouter event passes the request to the current window,
which triggers the specified user event automatically.

91

Window services

PFC menus use the message router)
PFC menus use the of_SendM essage menu function to call PFC user

events on a window.

v To use empty user events:

* Add codeto the PFC user event that performs the intended processing.
This example, which you might code in the pfc_PageSetup user event,
displays a PageSetup dialog box for the current DataWindow:

Integer 1li return
1li return = idw_active.Event pfc_ PageSetup ()
IF 1i return > 0 THEN

1li return = idw_active.Event &

pfc PrintImmediate ()
END IF

The discussionsin the PFC Object Reference show which events require
additional coding.

v To display a dialog box that allows users to control toolbars:
» Cdl the frame window’s pfc_Toolbars user event:
gnv_app.of GetFrame() .Event pfc Toolbars ()

This dialog box displays automatically when the user selects
Tools>Customize Toolbars from a menu that descends from PFC'’s
m_master menu.
v To save changes to the database:
e Cdl thewindow’s pfc_Save user event:

Integer 1li return

1li return = this.Event pfc_ Save()

PFC menus call this user event when the user selects File>Save from a
menu that descends from PFC’'s m_master menu. Additionally, the
w_master CloseQuery event calls pfc_Saveif the user clicks Yes when
prompted to save changes.

v To center awindow on the screen:

1 Enablethe base window service:

this.of SetBase (TRUE)

92 PowerBuilder

CHAPTER 4 Using PFC Services

2 Cdl then_cst_winsrv of _Center function:

this.inv_base.of Center ()

Preference service

Overview

Usage

PFC Library User’s Guide

The PFC preference service provides functionality that automatically saves
and restores a user’s window settings using either the registry or an INI file.
The preference services saves:

e Size
e Position
e Toolbar settings

PFC enables the preference service through the n_cst_ winsrv_preference user
object.

Use this service to save and restore window settings.

Automatic resetting))
If you enable the preference service, windows descended fromw_master save

and restore settings automatically.

To enable the window preference service:

e Cadlthew_master of _SetPreferencefunction. Thisfunctionisavailablein
al windows developed with PFC (w_master is the ancestor of al PFC
windows):

this.of SetPreference (TRUE)

PFC destroys the service automatically when the window closes.

To specify which window settings to restore, call one or more of the
following functions:

e Cal thefollowing functions as needed:

of SetToolbarltemOrder
of SetToolbarltemSpace
of SetToolbarltemVisible
of SetToolbars

of SetToolbarTitles

of SetWindow

93

Window services

Sheet management service

Overview

Usage

The PFC sheet management service provides functions that help you manage
multiple sheetsin an MDI application. When you enabl e the sheet management
service, PFC enables these items on the Window menu:

e Minimize All Windows
e Undo Arrange Icons

PFC enabl es the sheet management service through the
n_cst_ winsrv_sheetmanager user object.

Use this service to manage multiple sheets in MDI applications.

To enable the window sheet management service:

e Cdlthew_frameof SetSheetManager function. Thisfunctionisavailable
in al windows that descend from w_frame:

this.of SetSheetManager (TRUE)

PFC destroys the service automatically when the frame window closes.

To access sheet information:
» Cdl thefollowing functions as needed:

of GetSheetCount

of GetSheets

of _GetSheetsByClass
of _GetSheetsByTitle

PFC destroys the service automatically when the frame window closes.

Status bar service

Overview

94

The PFC status bar service displays date, time, and memory information in the
lower-right corner of an M DI frame window. Other status bar service features
include:

» Threshold monitoring for GDI and free memory
* Progress bar support
» Digplay of developer-specific text

For information on progress bar display, see “Using the progress bar control”
on page 183.

PowerBuilder

CHAPTER 4 Using PFC Services

Usage

Menu service

Overview

Usage

PFC Library User’s Guide

PFC enabl es the status bar service through then_cst winsrv_statusbar user
object. Status bar information displaysin the w_statusbar pop-up window.

You call n_cst_winsrv_statusbar functions to control the items displayed.
Use this serviceto display status bar information in an MDI frame window.

If necessary, you can call w_statusbar functions to modify status bar
information via PowerScript code.

To enable the window status bar service:

1 Cadll thew_frameof SetStatusBar function. Thisfunctionisavailablein
al windows that descend from w_frame:

this.of SetStatusBar (TRUE)
PFC destroys the service automatically when the frame window closes.

2 Cdln_cst winsrv_statushar functionsinthew_frame pfc_PreOpen event
to specify theitems displayed. The service displaysitemsin the order that
their associated functions are called, from left to right. For example, the
following example displays memory to the left of the date and time:

this.inv_statusbar.of SetMem (TRUE)
this.inv_statusbar.of SetTimer (TRUE)

3 Call other n_cst_winsrv_statusbar function as appropriate.

The PFC menu service provides functionsthat help you communicate between
amenu and awindow. It also provides functions that return information on an
MDI frame and tool bar items. You use the menu service functionswithin menu
item scripts.

PFC enables the menu service through the n_cst_menu user object.

Use this service in non-PFC menus to access the frame window and to
communicate with windows.

To enable the menu service:
e Declare avariable of typen_cst_ menu:

n_cst_menu lnv_menu

95

Resize service

This can be amenu-level instance variable or alocal variable within each
menu item script.

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.
\% To use the message router:
e Cdl the of_SendMessage function from within a menu item script:
n _cst menu 1nv_menu
Message.StringParm = "w_emplist"
Inv_menu.of_ SendMessage (this, "pfc_Open")
v To access the frame window:

» Cdl the of_GetMDIFrame function from within amenu item script (this
exampl e accesses the MDI frameto usein calling aframe-level event):

n_cst_menu 1lnv_menu
w_frame 1w frame

// This is an alternative to of SendMessage.
Inv_menu.of GetMDIFrame (this, 1lw frame)
Message.StringParm = "w_emplist"
lw_frame.Event pfc Open()

Resize service

Overview The PFC resi ze service provides functions that automatically move and resize
controls when the user resizes awindow, tab, or tab page. This service allows
you to control how and whether controls resize when the window, tab, or tab
page resizes.

PFC enables the resize service through the n_cst_resize user object.

You usen_cst_dwsrv_resize, the DataWindow resize service to move and
resize columns within a Datawindow.

96 PowerBuilder

CHAPTER 4 Using PFC Services

Usage Use this service to control window resizing. It provides two resizing options:

» Forsimple resizing Call the of Register function passingn_cst_resize
constants, such as FIXEDBOTTOM

» For total control over resizing Implement weighted resize by calling
the of _Register function with explicit specifications for moving and
scaling

v To enable the resize service:
e Cadl thew_master, u_tab, or u_tabpg of_SetResize function:

this.of SetResize (TRUE)

PFC destroys the service automatically when the window or tab closes.

v To register resizable controls:

« Call the of _Register function specifying how the control should respond
when the window or tab resize. For each registered control, you specify
how much the control should move during resize and how much the
control should scale during resize. This example lets a Datawindow
control expand down and to the right:

this.inv_resize.of Register(dw _emplist, &
0, 100, 100, 100)

v To specify a minimum size below which the resize service no longer
resizes controls:

e Cal the of_SetMinSize function, specifying a minimum size. You might
place this code in the window Open event, specifying aminimum size
somewhat smaller than the original size:

Integer 1i return

1li_return = this.inv resize.of SetMinSize &
(this.width - 200, this.height - 150)

v To use theresize service with sheets in an MDI application:
e Usedther of the following methods:
¢ Open sheetsin their original size:

OpenSheet (w_emp, "w_emplist", w_frame, &
0 , Originall)

PFC Library User’s Guide 97

Conversion service

» If you open sheets with any other enumeration, call the
of _SetOrigSize function before registering controls with the resize
service. The call to of _SetOrigSi ze passes what the width and height
would have been had the sheet opened in the original size:

this.inv resize.of SetOrigSize (1200, 1000)

Conversion service

Overview

Usage

Defining
n_cst_conversion

98

The PFC conversion service provides functions that you can call to convert
valuesfrom one datatypeto another. For example, you can call theof _Boolean
function to convert an integer or a string into a boolean value.

PFC enables the conversion service through the n_cst_conversion user object.
N_cst_conversion uses the PowerBuilder autoinstantiate option, which
eliminates the need for CREATE and DESTROY statements.

You can use conversion service functions to convert:

From To

Integer or String Boolean

Boolean, ToolbarAlignment, or SQLPreviewType | String

Boolean Integer

String ToolbarAlignment
Button String

Icon String

String SQLPreviewType

For complete information on conversion service functions, see the discussion
about n_cst_conversion in the PFC Object Reference.

Definen_cst_conversion asaglobal, instance, or local variable, as appropriate
for your application:

Usage of conversion functions Variable type

Throughout your application Global variable or asan instance variable
onn_cst_appmanager

Within asingle object Instance variable for the object

Within a single script Local variable

PowerBuilder

CHAPTER 4 Using PFC Services

\

\

To enable the conversion service:

Declare avariable of type n_cst_conversion.
n_cst_conversion inv_conversion

Because PFC defines this object with the autoinstanti ate option, you don’t
need to code CREATE or DESTROY statements.

To call a conversion service function:

Call the function, using dot notation to specify the object instance.
This example assumes an inv_conversion instance variable:

String 1s_checked

ls_checked = inv_conversion.of String &
(cbx_confirmed.Enabled)

MessageBox ("Conversion", "CheckBox is: " &
+ 1ls_checked)

Date/Time service

Overview

Usage

PFC Library User’s Guide

The PFC date/time service provides functions that you can call to perform
calculations with dates. For example, you can call the of _SecondsAfter
function to determine the number of seconds between two date/time values.

PFC enabl es the date/time service through the n_cst_datetime user object.
N_cst_datetime uses the PowerBuilder autoinstantiate option, which
eliminates the need for CREATE and DESTROY statements.

You can use the date/time service to perform many date and time calculations.
Functions you can perform with the date/time service include:

Convert a Julian date to a Gregorian date (Gregorian dates use the Date
datatype)

Convert seconds to hours

Convert seconds to days

Convert a Gregorian date to a Julian date

Determine the number of years between two date/time values

Determine the number of months between two date/time values

99

Date/Time service

Determine the number of weeks between two date/time values
Determine the number of seconds between two date/time values

Determine the number of milliseconds between two date/time values

 Determineif adateisvalid

e Determineif adate falls on aweekday

o Determineif adate falls on aweekend

e Halt processing until a specified date/time

Define n_cst_datetime asa global, instance, or local variable, as appropriate

for your application.

Usage of date/time functions

Variable type

Throughout your application

Global variable or as an instance variable on
n_cst_appmanager

Within a single object

Instance variable for the object

Within asingle script

Local variable

v To enable the date/time service:

Declare avariable of typen_cst_datetime:
n_cst datetime inv_datetime

Because PFC defines this object with the autoinstantiate option, you don’t

need to code CREATE or DESTROY statements.

v To call a date/time service function:

100

Call the function, using dot notation to specify the object instance.

This example assumes an inv_datetime instance variable:

Long 11 seconds, 11 days
11 seconds = Long(sle seconds.Text)

11 days = inv_datetime.of Days(ll_seconds)
MessageBox ("Date/Time", &

String(ll seconds) + " seconds is equal to " + &
String(ll days) + " days.")

PowerBuilder

CHAPTER 4 Using PFC Services

File service

Overview

Usage

PFC Library User’s Guide

The PFC file service provides functions that you can call to add file-
management functionality to an application. For example, you can call the
of FileRename function to rename afile.

Thefile service includes support for many platform-specific types of
operations, automatically calling the appropriate external function.

PFC enables thefile service through the n_cst_filesrv user object and its
platform-specific descendants.

Actions you can perform with the file service include:
¢ Assembling a concatenated filename
« Creating and deleting directories

* Reading, writing, renaming, and copying files, including files larger than
32,765 bytes

e Accessing fileinformation, including date and time
» Creating and sorting alist of al filesin adirectory

Definen_cst_filesrv asaglobal, instance, or local variable, as appropriate for
your application:

Usage of file service functions | Variable type

Throughout your application Global variable or as an instance variable on
n_cst_appmanager

Within a single object Instance variable for the object

Within a single script Local variable

Because PFC instantiates a platform-specific descendant of n_cst_filesrv, it
does not use the autoinstantiate feature. You must explicitly destroy the
n_cst_filesrv instance when you are through.

To enable the file service:

1 Declareavariable of typen_cst filesrv:
n cst filesrv inv filesrv
2 Cdl thef_set filesrv global function:
f SetFilesrv(inv_filesrv, TRUE)

Thef_ SetFilesrv global function automatically creates the platform-
specific n_cst_filesrv descendant.

101

INI file service

3 Destroy then_cst_filesrv object when you are through:

DESTROY inv filesrv

v To call afile service function:
« Cdl thefunction, using dot notation to specify the object instance.

This example callsthe of FileRead function to access the contents of the
filespecifiedinthede_filename SingleLineEdit. The example assumesan
inv_filesrv instance variable:

Integer 1i return
String 1s file[]

1li return = inv_filesrv.of FileRead &
(sle filename.text, 1ls file)
CHOOSE CASE 1li_ return

CASE -1
MessageBox ("Error", "Error accessing file")
CASE ELSE
// File processing goes here
END CHOOSE

v To destroy the file service:
e Usethe DESTROY statement:

DESTROY inv_filesrv

INI file service

Overview The PFC INI file service provides functions that you can call to read from and
writeto INI files.

PFC enablesthe INI file service through then_cst_inifile user object.
Usage You can use the INI file service to:

» Retrieve all keysfor an INI-file section

* Retrieveadll sectionsfor an INI file

+ RemovealinefromtheINI file

* Remove an entire section from the INI file

102 PowerBuilder

CHAPTER 4 Using PFC Services

Using Profilelnt, ProfileString, and SetProfileString
UsetheProfilelnt, ProfileString, and SetProfileString Power Script functionsto

access INI file entries one at atime.

The INI file service is not case sensitive.

To enable the INI file service:
e Declareavariable of typen_cst_inifile:

n_cst_inifile inv_ini handler

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

To use the INI file service:

e Cal n_cst_inifile object functions as needed, using dot notation to specify
the object instance.

Thisexample, which displaysall of an INI file section’'skeysinaListBox,
assumes an inv_ini_handler instance variable:

String 1s keys[]
Integer 1li _count, 1li_size

1li size = inv_ini handler.of GetKeys &
(gnv_app.of GetAppINIFile(), "CustApp",
1s_keys)
1b keys.Reset()
FOR 1li count = 1 to 1li_size
1b _keys.AddItem(ls keys[li count])
NEXT

Numerical service

Overview

PFC Library User’s Guide

The PFC numerical service provides functions that you can call to access
binary data. For example, you can call the of_GetBit function to determineif a
specified bit is on or off.

PFC enables the numerical service through the n_cst_numerical user object.

103

Numerical service

Usage

104

You can use numerical service functions to:
» Determine whether a specified hit is on or off
e Convert a base 10 number to binary

e Convert abinary number to base 10

Use this object with the Windows SDK
The Windows Software Development Kit (SDK) includes many functions that

return bit values. Use the of _GetBit function to access these values.

Definen_cst_numerical as aglobal, instance, or local variable, as appropriate
for your application:

Usage of numerical functions Variable type

Throughout your application Global variable or as an instance variable
on n_cst_appmanager

Within asingle object Instance variable for the object

Within asingle script Local variable

To enable the numerical service:
* Declareavariable of typen_cst_numerical:

n_cst_numerical inv_numerical

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

To call a numerical service function:
» Cdl thefunction, using dot notation to specify the object instance.
This example assumes an inv_numerical instance variable:
Long 11 _baselO

String 1s_binary

11 basel0 = Long(sle basel0.text)
ls binary = inv numerical.of Binary(ll baselO)

MessageBox ("Numerical", &
String(ll baselO) + " base 10 is equal to " &
+ 1ls binary + " in binary.")

PowerBuilder

CHAPTER 4 Using PFC Services

Platform service

Overview

Usage

PFC Library User’s Guide

The PFC platform service provides functions that you can call to add platform-
specific functionality to an application. You can use this service's functions on
multiple platformswithout recoding or adding conditional logic that checksfor
the current platform. For example, you can call the of GetFreeMemory
function to determine the amount of remaining memory; the platform service
automatically calls the appropriate external function for the current platform.

PFC enables platform services through the n_cst_platform user object and its
platform-specific descendants.

Print and Page Setup dialog boxes
PFC enables the Print and Page Setup dial og boxes through the platform

service.

Functions you can perform with the platform service include:

e Determining the amount of free memory

e Determining the amount of free system resources

« Determining the height and width, in PBUs, given atext string

Definen_cst_platform asaglobal, instance, or local variable, as appropriate
for your application:

Usage of platform functions | Variable type

Throughout your application Global variable or as an instance variable on
n_cst_appmanager

Within a single object Instance variable for the object

Within asingle script Local variable

Because PFC instantiates a platform-specific descendant of n_cst_platform, it
does not use the autoinstantiate feature. You must explicitly destroy the
n_cst_platform instance when you are through.

To enable the platform service:
1 Declareavariable of typen_cst_platform:
n _cst platform inv platform

2 Cdl thef_SetPlatform global function:

f SetPlatform(inv platform, TRUE)

105

Selection service

Thef_ SetPlatform global function automatically creates the platform-
specific n_cst_platform descendant.

v To call a platform service function:
e Cdl thefunction, using dot notation to specify the object instance.

This example calsthe of GetFreememory function and displaysthis
value in the status bar. The example assumes aninv_platform instance
variable:

Long 11 free memory

11 free memory = &
inv _platform.of GetFreeMemory ()
gnv_app.of GetFrame() .SetMicroHelp &
("Free memory: " + String(ll free memory))

v To destroy the platform service:
e Usethe DESTROY statement:

DESTROY inv platform

Selection service

Overview The PFC sdlection service provides a function that displays the w_selection
dialog box, which allows users to select arow. When the user clicks OK, the
function returns the values in one or more columns for the selected row.

PFC enables the selection service through the n_cst_selection user object.

Usage You use the selection service’s of _Open function to display a dialog box
allowing users to choose an item that your application then processes.

Therearethree basic versions of the of _Open function. Each displaysdifferent
information in w_selection:

W _sdlection retrieves and displays all rows for a specified DataWindow
object

W _sdlection displays a passed set of rows

» W._sdlection displays rows that have been saved as part of the passed
Datawindow object

106 PowerBuilder

CHAPTER 4 Using PFC Services

Definen_cst_selection asaglobal, instance, or local variable, as appropriate
for your application:

Usage of selection service functions Variable type

Throughout your application Global variable or as an instance
variable on n_cst_appmanager

Within a single object Instance variable for the object

Within asingle script Local variable

v To enable the selection service:
e Declareavariable of typen_cst_selection:
n _cst selection inv selection
Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.
v To use the selection service:

1 Declarevariablesused by of Open:

n _cst selection 1nv_selection
Any 1la selected[]

String ls columns|[]

Integer 1li count

2 Specify the columns whose values are to be returned:

ls columns[1l] = "emp id"
ls columns[2] = "emp lname"
ls_columns[3] = "emp fname"

3 Display thew_selection window by calling the of_Open function (this
version of of_Open causesw_selectionto retrieve al rowsin the specified
Datawindow object):

Inv _selection.of Open &
("d empall", la selected, SQLCA, ls_ columns)

4 Accessthe returned column values as appropriate (this example displays
returned valuesin a ListBox):

FOR 1li count = 1 to UpperBound(la selected)
lb_selected.AddItem &
(String(la_selected[li count]))
NEXT

PFC Library User’s Guide 107

SQL parsing service

SQL parsing service

Overview

Usage

108

The PFC SQL parsing service provides functionsthat you can call to assemble
and parse SQL statements.

PFC enablesthe SQL parsing service through the n_cst_sgl user object.
You can use the SQL parsing service to:

» Build aSQL statement from its component parts

» ParseaSQL statement into its component parts

Definen_cst_sgl asaglobal, instance, or local variable, as appropriate for your
application:

Usage of SQL parsing functions
Throughout your application

Variable type

Global variable or asan instance variable
on n_cst_appmanager

Instance variable for the object

Local variable

Within a single object
Within asingle script

To enable the SQL parsing service:
* Declareavariable of typen_cst_sql:
n _cst_sql inv_sql

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

To build a SQL statement from its component parts:

» Cadl the of_Assemble function, using dot notation to specify the object
instance.
This example assumes an inv_sgl instance variable:

String 1s_sql
n _cst_sqglattrib 1nv sqglattrib[]
Inv_sqglattrib[l].s_verb = sle verb.text
Inv_sqglattrib[l] .s_tables = sle tables.text

Inv_sglattrib[1l] .s_columns = sle columns.text
Inv_sglattrib[1l] .s _values = sle values.text
Inv_sqglattrib[1l] .s_where = sle where.text

Inv_sqglattrib[1l].s_order sle_order.text
Inv_sqglattrib[1l] .s_group = sle group.text
Inv_sqglattrib[1l] .s_having = sle having.text

PowerBuilder

CHAPTER 4 Using PFC Services

ls sqgl = inv _sqgl.of Assemble(lstr sqgl)
MessageBox ("SQL", 1ls sql)

v To parse a SQL statement into its component parts:

Call the of_Parse function, using dot notation to specify the object
instance.

This example assumes an inv_sql instance variable:

String 1s sqgl
Integer 1li return
n_cst_sqglattrib 1nv_sqglattrib[]

1li return = inv _sqgl.of Parse &
(mle sqgl.text, 1lnv_sglattrib)

IF 1i return > 0 THEN
sle verb.text= lnv_sqglattrib[l].s_ verb
sle_tables.text = lnv_sqglattrib[1l].s_tables
sle_columns.text =

Inv_sqglattrib[1l] .s_columns

sle values.text = lnv_sqglattrib[1l].s values
sle where.text = 1lnv _sqglattrib[1l].s_where
sle order.text = 1lnv _sqglattrib[l].s_order

sle group.text Inv_sqglattrib[1] .s_group
sle having.text= 1lnv sqglattrib[1l].s_having
END IF

String-handling service

Overview The PFC string-handling service providesfunctionsthat you can call to operate
on strings.

PFC enabl es the string-handling service through the n_cst_string user object.

Usage You can use the string-handling service to perform many string operations,
including:

PFC Library User’s Guide

Separating a delimited string into an array
Converting an array into adelimited string

Determining if astring is lowercase, uppercase, alphabetic, or
aphanumeric.

Global replacing

109

String-handling service

e Counting the number of occurrences of a specified string

* Removing spaces and nonprintable characters from the beginning or end

of astring

e Determiningif astring isacomparison or arithmetic operator

e Converting al thewordsin astring to initia cap

Define n_cst_string as aglobal, instance, or local variable, as appropriate for

your application:

Usage of string-handling functions

Variable type

Throughout your application

Global variable or as an instance
variable on n_cst_appmanager

Within a single object

Instance variable for the object

Within asingle script

v To enable the string-handling service:

Local variable

e Declareavariable of typen_cst_string:

n _cst_string

inv_string

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

v To call a string-handling service function:

e Cdl thefunction, using dot notation to specify the object instance.

This example, which isfrom then_cst_dwsrv_report of AddText
function, callsthe of _ParseToArray function to convert the as_text string
into elementsin thels _line array. The example uses an Inv_string local

variable:

n _cst_string
Integer
String

1i newlines
1s line[]
1li newlines =

(as_text, "~r-~n",

110

Inv_string

Inv_string.of ParseToArray &

1s _line)

PowerBuilder

CHAPTER 4 Using PFC Services

Metaclass service

Overview The metaclass service contains functions that provide information on the
functions, events, and variables defined within another object.

PFC enabl es the string-handling service through the n_cst_metaclass user
object.

Usage The most common use of the metaclass service is to determine whether an
object function or event exists before calling it.

v To use the metaclass service:
1 Createavariableof typen cst_ metaclass:

boolean 1b defined

n _cst metaclass 1nv _metaclass
classdefinition 1lcd obj
String 1ls args|[]

Integer 1li rc

Because PFC defines this obj ect with the autoinstantiate option, thereisno
need to code CREATE or DESTROY statements.

2 Cdl n_cst_metaclass functions as needed:

lcd obj = FindClassDefinition("w_sheet")
lb_defined = lnv_metaclass.of isFunctionDefined &
(lcd_obj,"of Validation", 1ls_args)
If 1b defined Then
// Qualify with instance of w_sheet descendant.
li_ rc = w_sheet.Function Dynamic &
of Validation ()
If 1i rc < 0 Then Return -1
End If

Logical unit of work service

Overview Thelogical unit of work service provides support for self-updating objects. A
self-updating object encapsulates all required update functionality by
implementing aset of functions (self-updating object API) that n_cst_luw calls
during the save process. These functions call events that update the object as
appropriate. Thelogical unit of work service calls these functions
automatically as part of the default save process.

PFC Library User’s Guide 111

Logical unit of work service

PFC includes severa salf-updating objects, including:

U dw
N_ds

U lvs
U_tab
U_tvs
U_base
W_master

Examine these objects to see implementations of the self-updating object API.

Thedefault w_master pfc_Save process usesthelogical unit of work serviceto
update all updatable self-updating objects on awindow.

See “Using the pfc_Save process’ on page 195.

Implementing self-updating objects
Thelogical unit of work service updatesall referenced, updatabl e self-updating

112

objects.

Most self-updating objects are not updatable by default
To ensure backward compatibility, u_dw isthe only self-updating object that is

updatable by default.

The functions that make up the complete self-updating object API are:

Function

Purpose

of AcceptText

Callsthe pfc_AcceptText event, which calls AcceptText
functions as appropriate

of _UpdatesPending

Calls the pfc_UpdatesPending event, which determines
whether the object has been updated

of _Validation Callsthe pfc_Validation event, which validates data for the
object

of _UpdatePrep Callsthe pfc_UpdatePrep event, which prepares the object
for update as appropriate

of _Update Callsthe pfc_Update event, which updates the database

of PostUpdate Callsthe pfc_PostUpdate event, which performs post-

update processing as appropriate

Use the Browser for information on the signatures of these functions and

events.

PowerBuilder

CHAPTER 4 Using PFC Services

Writing your own self-
updating objects

Extending the save
process

PFC Library User’s Guide

To write a self-updating object, implement the functions listed above and
ensure that areference to the object isin the array passed to the corresponding
n_cst_luw functions.

By default, thew_master pfc_Save process updates all modified DataWindows
within the window. You can extend this process as follows:

Other self-updating objects You can define other self-updating objects
as updatable by calling the of SetUpdateable function in the object’s
Constructor event. Thisexampleisfrom au_lvs-based ListView:

this.of SetUpdateable (TRUE)

Now thelogical unit of work servicewill call functionsto updatetheu Ivs
data source as part of a default save process.

DataStores You can add one or more DataStores to the list of objectsto
be updated by calling thew_master of _SetUpdateObjects function:

PowerObject 1po objs|[]
Integer 1i count

lpo objs = this.control

1i count = UpperBound (lpo objs)

1i count++

lpo_objs[li_count] = ids_data
this.of SetUpdateObjects(lpo objs)

Additional windows You can add one or more windows to the list of
objects to be updated by calling the w_master of SetUpdateObjects
function:

PowerObject 1po objs|[]
Integer 1i count

lpo objs = this.control

1i count = UpperBound (lpo objs)

1i count++

// Update w_other as well as this window
lpo objs[li count] = w_other

this.of SetUpdateObjects(lpo objs)

113

List service

List service
Overview Many applications need to maintain information in linked lists. The PFC list
service provides objects and functions you use to create and manipulate linked
lists. It supports these types of lists:
» Basiclinked list (sorted or unsorted)
+ Stack (LIFO)
* Queue (FIFO)
* Tree (balanced binary tree)
ﬁolgsetsis made up of A linked list is made up of nodes. Each node contains:
» A referenceto the previousitem in thelist
* Areferenceto the next itemin thelist
e Akey
 Data
» Baanceinformation (tree lists only)
When adding anode to alinked list, you provide the key and data; the service
objects maintain references to the previous and next items.
About sorted lists A treelist is sorted automatically. You can also usethen_cst_list object to

maintain asorted linked list.

Using a basic list

A basic linked list differs from a stack and a queue in that nodes are not
removed as they are accessed.

PFC enables basic list processing through the n_cst_list user object.

Creating a basic list When you create a basic list, you create and popul ate instances of
n_cst_linkedlisthode and add them to the list.

v To create a basic list:
1 Declareaninstance variable of type n_cst_list:
n cst list inv list

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

114 PowerBuilder

CHAPTER 4 Using PFC Services

Creating a sorted list

PFC Library User’s Guide

2 Addnodesto the list. To do this, create an instance of
n_cst_linkedlistnode, specify akey and data by calling the n_cst_node
of SetKey and of SetData functions, then add the node to the list by
calling of_Add. This example adds alist item using a SingleLineEdit as
the source:

n _cst linkedlistnode 1nv _node

Integer 1i return

Inv_node = CREATE n_cst_linkedlistnode
Inv_node.of_ SetKey(sle_ 1.text)

Inv _node.of SetData(sle 1.text)

1li return = inv list.of Add(lnv_node)

The default PFC sorted list object maintains alist of nodes in ascending order,
by key value. Duplicates are allowed by default; but you can disallow them if
necessary. A sorted list differs from a stack and a queue in that nodes are not
removed as they are accessed.

You can customize sort processing by extending the
n_cst_linkedlistnodecompare of Compare function.

See “Creating a comparison object” on page 124.
PFC enables sorted list processing through then_cst_list user object.

To create a sorted list:

1 Declareaninstance variable of typen cst_list:
n cst _list inv_sortedlist

2 Specify that thelist is sorted:
inv_sortedlist.of SetSorted (TRUE)

3 (Optional) Specify whether the list allows duplicate entries (by default,
duplicates are alowed):

inv_sortedlist.of SetDuplicatesAllowed (FALSE)

4 (Optional) Specify a customized node comparison object. This example
assumes an inv_customcompare instance variable of type
n_cst_customcompare:

inv_customecompare = CREATE n_cst_customcompare
inv_sortedlist.of SetCompare(n_cst_ customcompare)

115

List service

Finding nodes in a list

116

5

Add nodesto thelist. To do this, first create an instance of
n_cst_linkedlistnode, specify akey and data by calling the n_cst_node
of SetKey and of SetData functions, then add the node to the list by
calling of_Add. This example adds a sorted list item using a
SingleLineEdit as the source:

n _cst linkedlistnode 1nv node
Integer 1i return

Inv_node = CREATE n_cst_linkedlistnode
Inv_node.of_ SetKey(sle_1.text)

Inv node.of SetData(sle 1.text)

1i return = inv list.of Add(lnv_node)

To find nodes you must first know the key. PFC does not remove list nodes as
they are accessed.

To find anode in a sorted list:

1

Define variables for two nodes:
n _cst linkedlistnode 1nv node, 1lnv_temp

Create one of the nodes:
Inv_temp = CREATE n_cst linkedlistnode

Populate the empty node with the key of the node you want to find:
Inv_temp.of SetKey(sle 2.text)

Call the of _Find function to access the requested node. This function’s
first argument returns a reference to the requested node:

inv_list.of Find(lnv_node, lnv_temp)

Access the key and data of the found node by calling the
n_cst_linkedlistnode of GetKey and of GetData functions.

Destroy the temporary node:

DESTROY 1lnv_temp

Do not destroy Inv_node
Thelnv_nodevariableisareferencetothenodeinthelist. If you destroy it, the

list becomes corrupted. Instead, use of Remove as described in the next
procedure.

PowerBuilder

CHAPTER 4 Using PFC Services

Accessing the entire
list at once

Removing nodes from
a list

PFC Library User’s Guide

You can use the of_Get function to retrieve all nodes in the list.

To retrieve the entire list in one function call:

1 Definean array of type n_cst_linkedlistnode to contain the retrieved
nodes:

n_cst_linkedlistnode 1nv_nodes[]
Integer 1li return, 1li count

Any la data

String 1ls_data

2 Call theof Get function:
1i return = inv list.of Get (lnv_nodes)

3 Processthe nodes as appropriate. This example displays node datain a
ListBox:

1b_1.Reset ()

FOR 1li count = 1 to 1li return
Inv nodes[li count].of GetData(la_data)
ls data = String(la_ data)
lb_1.AddItem(ls_data)

NEXT

Thistechnique also applies to stacks, queues, and trees.

You must explicitly remove nodes from alist (they are not removed
automatically, asin a stack or aqueue).

To remove a node from a list:

1 Define variablesfor two nodes:
n _cst linkedlistnode 1nv node, 1lnv_temp

2 Create one of the nodes:
Inv_temp = CREATE n_cst linkedlistnode

3 Populate the empty node with the key of the node you want to remove:
Inv_temp.of SetKey(sle_ 2.text)

4 Cadl the of _Find function to access the requested node. This function
returns a reference to the requested node (the first argument):

inv_list.of Find(lnv_node, 1lnv_temp)

117

List service

Destroying a list

Using a stack

Creating a stack

118

5 Remove the node from the list by calling the of Remove function:
inv_list.of Remove (1nv_node)

6 Destroy the temporary node:
DESTROY 1nv_temp

When you no longer need the list, destroy the list and all of its nodes.

To destroy a list and all of its nodes:
» Destroy al nodesin thelist by calling of _Destroy:

Long 11 count

11 count = inv_list.of Destroy()
MessageBox ("Destroy List", &
String(ll count) + " nodes destroyed")

A stack maintains alast-in first-out (LI1FO) list. When you add a new node to
the stack, the stack object placesit at the beginning; when you get anode from
the stack, the stack object accessesit from the beginning of the list, removing
it in the process.

PFC enables stack processing through the n_cst_stack user object.

When you create a stack, you create and popul ate instances of
n_cst_linkedlistnode and push them onto the stack.
To create a stack:

1 Declareaninstance variable of type n_cst_stack:
n _cst_stack inv_stack

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

2 Add nodesto the stack. To do this, create an instance of the node, specify
akey and data by calling the n_cst_linkedlistnode of _SetKey and
of _SetData functions, then add the node to the stack by calling of _Push
(this example creates a stack using a SinglelL ineEdit as the source):

n _cst linkedlistnode 1nv node
Integer 1li return

PowerBuilder

CHAPTER 4 Using PFC Services

Inv_node = CREATE n_cst linkedlistnode
Inv_node.of SetKey(sle 1.text)
Inv_node.of_ SetData(sle_1.text)
1li_return = inv_stack.of_ Push(lnv_node)

Removing nodes from You can only access a node from the beginning of the stack (the last node
a stack added). You pop a stack to access a node.

v Toremove a node from the stack:

1 Declareavariable of typen_cst_linkedlistnode to contain the node you
want to remove from the stack:

n_cst_linkedlistnode 1lnv_node
2 Remove the node from the stack by calling of _Pop:
inv_stack.of Pop (1nv_node)

3 Accessthe key and data as necessary by calling the n_cst_linkedlistnode
of GetKey and of GetData functions:

Any la key

IF IsValid(lnv_node) THEN
Inv_node.of GetKey(la_ key)
MessageBox ("Stack™", &
"Key is " + String(la key))

ELSE
MessageBox ("Stack", "List is empty")
END IF
Destroying a stack When you no longer need the stack, destroy the stack and al of its nodes.

v To destroy a stack:
* Destroy al nodesin the stack by calling of _Destroy:

Long 11 count
11 _count = inv_stack.of Destroy ()

MessageBox ("Destroy", &
String(ll count) + " nodes destroyed")

PFC Library User’s Guide 119

List service

Using a queue

Creating a queue

Removing nodes from
a gueue

120

A gqueue maintains afirst-in, first-out (FIFO) list. When you add anew nodeto
the queue, the queue object placesit at the end; when you get a node from the
gueue, the queue object accesses it from the beginning of the list, removing it
in the process.

PFC enables queue processing through the n_cst_queue user object.

When you create a queue, you create and populate instances of
n_cst_linkedlistnode and add them to the queue.

To create a queue:
1 Declareaninstance variable of type n_cst_queue:
n_cst_queue inv_queue

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

2 Add nodesto the queue. To do this, create an instance of the node, specify
akey and data by calling the n_cst_linkedlistnode of SetKey and
of SetData functions, then add the node to the queue by calling of Put.
This example creates a queue using a SingleLineEdit as the source:

n_cst_linkedlistnode 1nv_node

Integer 1i return

Inv _node = CREATE n_cst linkedlistnode
Inv_node.of SetKey(sle_1.text)
Inv_node.of SetData(sle_1l.text)
1i return = inv_queue.of Put (lnv_node)

You can only access nodes from the beginning of a queue (the oldest node in
thelist).

To remove a node from the queue:

1 Declareavariable of typen_cst_linkedlistnode to contain the node you
want to remove from the queue:

n_cst_linkedlistnode 1nv_node
2 Remove the node from the queue by calling of Get:

inv_queue.of Get (lnv_node)

PowerBuilder

CHAPTER 4 Using PFC Services

Destroying a queue

Using a tree

Creating a tree

PFC Library User’s Guide

3 Accessthekey and dataasnecessary by callingthen_cst_nodeof GetKey
and of _GetData functions:

Any la key

IF IsValid(lnv_node) THEN
Inv_node.of GetKey(la key)

MessageBox ("Queue", &

"Key is " + String(la key))
ELSE
MessageBox ("Queue", "List is empty")
END IF

When you no longer need the queue, destroy thelist and all of its nodes.

To destroy a queue:

* Destroy al nodesin the queue by calling of_Destroy:

Long 11 count

11 _count = inv_gqueue.of Destroy ()
MessageBox ("Destroy All", &
String(ll count) + " nodes destroyed")

The PFC treelist object maintains abalanced binary tree of nodesin ascending
order, by key value. This object provides al the functionality of a sorted list
with no duplicates allowed. It differsfrom a stack and a queue in that nodes
are not removed as they are accessed.

The balanced binary tree maintained by the PFC tree list object is never more
than one level out of balance. Because the tree structure reduces the number of
nodes that must be searched during find operations, it provides better
performance than a sorted list.

You can customize sort processing by extending the n_cst_treenodecompare
of _Compare function. See “Creating a comparison object” on page 124.

PFC enables tree processing through the n_cst_tree user object.

When you create a tree, you create and populate instances of n_cst_treenode
and add them to the tree.

121

List service

Finding nodes in a
tree

122

To create a tree:
1 Declareaninstance variable of type n_cst_tree:
n_cst_tree inv_tree

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

2 (Optional) Specify a customized node comparison object. This example
assumes an inv_customcompare instance variable of type
n_cst_customcompare:

inv_customecompare = CREATE n_cst_customcompare
inv_tree.of SetCompare (inv_customcompare)

3 Addnodestothetree. To dothis, create an instance of the node by calling
of Create, specify akey and databy callingthen_cst_treenodeof SetKey
and of _SetData functions, then add the node to the tree by calling the
of Addfunction. ThisexamplecreatesatreeusingaSingleLineEdit asthe
source:

n cst treenode 1nv_node
Integer 1i return

inv_tree.of Create(lnv_node)
Inv_node.of SetKey(sle_1.text)
Inv_node.of SetData(sle_1l.text)

1li return = inv tree.of Add(lnv_node)

You find nodesin abalanced binary tree. They aren’'t removed from thelist as
they are accessed.

To find anode in a tree list:

1 Create an empty node:

n _cst treenode 1nv _node, lnv_temp

inv_tree.of Create(lnv_temp)
2 Populate the empty node with the key of the node you want to find:
Inv_temp.of SetKey(li key)

3 Cdl the of_Find function to access the requested node. This function’s
first argument returns a reference to the requested node:

inv_tree.of Find(lnv node, 1lnv_ temp)

4 Accessthe key and data of the found node by calling the n_cst_node
of GetKey and of _GetData functions.

PowerBuilder

CHAPTER 4 Using PFC Services

5 Destroy the temporary node:

DESTROY 1lnv_temp

Do not destroy Inv_node])
Thelnv_node variable is areference to the node in the treelist. If you destroy

it, the list becomes corrupted. Instead, use of Remove as described in the next
procedure.

Removing nodes from You must explicitly remove nodes from atreelist (they are not removed
atree automatically, asin astack or aqueue).

v To remove a node from atree list:
1 Create an empty node:

n_cst_treenode 1nv_node, lnv_temp

inv _tree.of Create(lnv_temp)
2 Populate the empty node with the key of the node you want to delete:
Inv_temp.of SetKey(li key)

3 Call theof Find function to access the requested node. This function
returns a reference to the requested node (the first argument):

inv_tree.of Find(lnv_node, 1lnv_temp)
4 Remove the node from the tree list by calling the of Remove function:

inv _tree.of Remove (lnv_node)

5 Destroy the temporary node:
DESTROY 1lnv_temp
Destroying a tree When you no longer need the tree list, destroy thelist and all of its nodes.

v To destroy atree list:
e Destroy al nodesin the treelist by calling of _Destroy:

Long 11 count
11 count = inv_tree.of Destroy ()

MessageBox ("Destroy All", &
String(ll count) + " nodes destroyed")

PFC Library User’s Guide 123

List service

Creating a comparison object

Custom comparison
objects

124

At the core of any sort processing is a greater than/less than comparison. The
PFC sorted list and tree list objects use the n_cst_nodecompare of Compare
function to perform this comparison. By default, the n_cst_nodecompare

of _Compare function performs a comparison of two nodes as follows:

e Compares key values (not data values)

» Worksfor simple datatypes only (that is, al but object instances and
enumerated data types)

» Returns values that the sorted list and treelist objects use to maintain an
ascending sorted list

If your sorted list requires different comparison logic, you must inherit from
n_cst_nodecompare and override the of _Compare function.

If your sorted list requires different comparison logic, you need to create a
descendant of n_cst_nodecompare with an overridden of _Compare function
and enable that object at execution time.

To create a customized comparison object:

1 Usethe User Object painter to create a customized n_cst_nodecompare
descendant.

2 Inthe customized n_cst_nodecompare descendant, implement a Public
of _Comparefunction to compare key valuesin thetwo passed nodes. This
function should take two arguments of type n_cst_node (passed by value)
and return Integer values as follows:

« 1 Thekey of the second nodeisgreater than the key of thefirst node
« 0 Thekey of the second node is equal to the key of the first node
« -1 Thekey of the second node is less than the key of the first node

In this example, each passed node contains a reference to a custom class
user object with state and last name instance variables to compare:

Any la_keyl, la key2
String 1s_keytypel, 1ls keytype2
n cst_empinfo 1nv empl, 1lnv _emp2

IF NOT IsValid(anv_nodel) THEN Return -3
IF NOT IsValid(anv_node2) THEN Return -3

anv_nodel.of GetKey(la keyl)
IF IsNull(la_keyl) THEN Return -4

PowerBuilder

CHAPTER 4 Using PFC Services

PFC Library User’s Guide

anv_node2.of GetKey(la key2)

IF IsNull(la_key2) THEN Return -4
1ls _keytypel = ClassName (la keyl)
1ls _keytype2 = ClassName (la_ key2)

// Check data type of node data.

IF 1ls keytypel = "" THEN Return -6

IF IsNull(ls keytypel) THEN Return -6

IF 1ls _keytypel <> "n cst empinfo" THEN Return -6
IF 1ls _keytype2 = "" THEN Return -6

IF IsNull(ls keytype2) THEN Return -6

IF ls keytype2 <> "n cst empinfo" THEN Return -6

1nv_empl la_keyl // Cast to n_cst_empinfo

lnv_emp2 la_key2

// First compare State.

// Additional error checking omitted.

IF 1lnv_empl.is_state < lnv_emp2.is_state THEN
Return -1

ELSEIF 1lnv_empl.is state > lnv _emp2.is_ state THEN
Return 1

ELSE // States are equal. Compare last name.
IF lnv_empl.is_lname < 1lnv_emp2.is lname THEN

Return -1

ELSEIF &
Inv _empl.is lname > lnv_emp2.is lname THEN
Return 1
ELSE // State and lname are equal.
Return 0
END IF
END IF

To enable a customized comparison object at execution time:

1

In the object that uses PFC list processing, define an instance variable that
uses your customized n_cst_nodecompare object as the data type:

n_cst_customcompare inv_customcompare

2 Create an instance of the customized comparison object and call the

n_cst_list of _SetCompare function:

inv_customcompare = CREATE n_cst customcompare

inv_sortedlist.of_ SetCompare (inv_customcompare)

125

Timing service

Timing service

Overview

Using single timers

126

Initialize objects before adding them to thelist. In the example ahead, you
create an array of n_cst_empinfo objects and initialize them with last
name, first name, and state.

Create nodes, set node values, and add them to the list as necessary:

n _cst node 1nv_node
Integer 1i 4

FOR 1i i = 1 TO UpperBound (inv_empinfo)
inv _tree.of Create(lnv node)

Inv _node.of SetKey(inv _empinfo[li 1i])
Inv _node.of SetData(inv_empinfo[li il)
inv_tree.of Add(lnv_node)

NEXT

The timing service works with PFC’s n_tmg Timing object to provide single
and multipletimers. Thesetimers are especially useful with standard class and
custom class user objects.

PFC enables the timing service through n_tmg, n_cst_tmgsingle, and
n_cst_tmgmultiple.

Usen_cst_tmgsingle to maintain asingle timer. You establish the timer by
calling the of _Register function, specifying the object to be notified, the event
to be notified, and the timer interval.

To use a single timer:

1

Establish an instance variable of type n_tmg:
n tmg itmg timer
Create the instance of n_tmg:
itmg timer = CREATE n_ tmg
Enable the single timer service:

itmg timer.of SetSingle (TRUE)

PowerBuilder

CHAPTER 4 Using PFC Services

4 Register the object and event to be notified (the object isawindow in this
example):

itmg timer.inv_single.of Register &
(this, "ue_showtimer", 15)

5 Code the event to receive notification from n_cst_tmgsingle
(ue_showtimer in this example).

Using multiple timers Usen_cst_tmgmultiple to maintain multiple timers. You establish each timer
by calling the of _Register function, specifying the object to be notified, the
event to be notified, and the timer interval.

v To use multiple timers:

1 Establish aninstance variable of type n_tmg:
n tmg itmg timer

2 Createtheinstance of n_tmg:
itmg _timer = CREATE n_tmg

3 Enablethe multiple timer service:
itmg_timer.of SetMultiple (TRUE)

4 Register the objects and eventsto be notified:

itmg timer.inv_multiple.of Register &
(iw_sheetl, "ue timer", 7)

itmg timer.inv multiple.of Register &
(iw_sheet2, "ue timer", 11)

itmg timer.inv multiple.of Register &
(iw_sheet3, "ue timer", 13)

5 Codetheeventsto receive natification fromn_cst_tmgmultiple (ue_timer
in this example).

PFC Library User’s Guide 127

Timing service

128 PowerBuilder

CHAPTER 5 Using PFC Visual Controls

About this chapter This chapter explains how to use PFC standard visual user objects and
custom visual user objects.
Contents Topic Page
About PFC visual controls 129
Using standard visual user objects 130
Using custom visual user objects 169

About PFC visual controls

PFC contains two types of visual controls:

» Standard visual user objects Consist of asingle PowerBuilder
control. PFC adds logic to enhance the control’s functionality and
reusability. Theu_lb ListBox control is an example of a standard
visual user object.

« Custom visual user objects Consist of several controls that
function as a unit. PFC adds logic to perform the appropriate
processing. The u_calculator calculator control is an example of a
custom visual object.

Standard class user objects
PFC also features a set of standard class user objects, such asn_tr

(transaction), n_cn (connection), and n_msg (message).

For information on using standard class user objects, see Chapter 3, “PFC
Programming Basics'.

PFC Library User’s Guide 129

Using standard visual user objects

Using standard visual user objects

PFC contains standard visual user objects for all window controls. Standard
visual user objectsinclude:

Basic window controls (such as CommandButton, RadioButton, and
CheckBox)

More complex window controls (such as Datawindow, ListView,
TreeView, RichTextEdit, and Tab)

Using basic functionality

A standard visual user object inherits its definition from one standard
PowerBuilder control. PFC extends each control as appropriate, and you can
extend them further.

130

The PFC standard visual user objectsinclude the following basic functionality,
depending on their type:

Cut, copy, and paste Editable controlsinclude Cut, Copy, Paste, and
other editing functions.

Pop-up menu Editable controlsinclude code in the RButtonUp event to
display a pop-up menu. This menu enables usersto Cut, Copy, and Paste
text into the current visual control.

Autoscroll The DropDownListBox and DropDownPictureListBox
controls provide functionality that scrollsthelist automatically asthe user
types.

Selection inversion The ListBox and PictureListBox controls provide
functionality that invert the current selection.

Autoselect Certain editable controls provide functionality that select
text automatically when the control receives focus.

MicroHelp display Maost controls contain precoded functionality in the
GetFocus event to display atag value in the microhelp area of an MDI
frame

For how to place a standard visual user object on awindow, see the
PowerBuilder User’s Guide.

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide

Cut, copy, paste, and other editing functions

All editable PFC standard visual user objectsinclude user events that perform
text editing functions. Editable PFC visual user objectsinclude:

Control PFC visual user object
DropDownListBox u_ddlb
DropDownPictureListBox | u_ddplb

Datawindow u_dw

EditMask u_em

MultiLineEdit u_mle

OLE custom control u_oc

RichTextEdit u_rte

SingleLineEdit u sle

PFC implements text editing functions by defining user events as appropriate

for editable standard visual user objects:
Text editing function User event
Clear pfc_Clear
Copy pfc_Copy
Cut pfc_Cut
Paste pfc_Paste
Select All pfc_SelectAll
Undo pfc_Undo
Paste Special pfc_PasteSpecial (u_oc only)

When you usethe PFC standard visual user objectsaswindow controls, editing
functions are enabled automatically when you use a menu that descends from
the PFC m_master menu. M_master includesan Edit menu that has menu items
for all editing functions. These Edit menu items use the message router to call
the appropriate user event in the current control. You can also add code to
command buttons and other controlsto call these user events.

Using right-mouse button support

All editable PFC standard visual user objects include right mouse button
support, displaying one of the following pop-up menus:

131

Using standard visual user objects

Customizing menu
display

Disabling right-mouse
button support

132

Menu Used by
m_edit U_ddib
U_ddplb
U em
U_mle
U rte
U de
m_dw U_dw
m_lvs U_lIvs
m_oc U_oc
m_tvs U_tvs

These pop-up menus all include standard text editing functions. However, text
editing functions are not enabled or visiblein all pop-up menus by default.

All controlsthat provide right-mouse button support include a
pfc_PreRMBMenu event for customizing the items that appear on a pop-up
menu. PFC calls this event after the menu is created but before it is displayed.

To customize pop-up menu display:

1 (Optional) Usethe Menu painter to create additional items for the pop-up
menul.
2 After placing the user object in awindow, add logic to the

pfc_PreRMBMenu event to hide or disable menu items. This example
disablesthem_dw Insert, Add Row, and Delete menu items (am_dw isan
argument passed by reference to pfc_PreRMBMenu):

am _dw.m table.m insert.Enabled = FALSE
am dw.m_table.m addrow.Enabled FALSE
am dw.m _table.m delete.Enabled = FALSE

You can disable right-mouse button support entirely. You may want to do this
for aread-only control, for example.

To disable right-mouse button support for editable controls:

After placing the user object in awindow, add code to the control’s
Constructor event to set theib_rmbmenu instance variable to FAL SE:

this.ib_ rmbmenu = FALSE

U_dw disables items automatically
Theu_dw Datawindow control disables pop-up menuitemsautomatically

for read-only Datawindow objects.

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Using autoscroll in drop-down lists

The u_ddlb DropDownListBox and u_ddplb DropDownPictureListBox
controlsfeature autoscrolling: if you pressr, the control scrollstothefirst entry
beginning with r, selecting the remaining text; if you then pressi, the control
scrollsto the first entry beginning with ri.

This capability differs from the standard DropDownListBox and
DropDownPictureListBox behavior, which scrolls based on the first | etter
only: if you pressr, the control scrollsto the first entry beginning with r; if you
then pressi, the control scrolls to the first entry beginning with i.

For information on autoscroll in DropDownDataWindows, see “ Drop-down
DataWindow search service” on page 67.

By default, autoscroll is disabled.

v To enable autoscroll:

e After placing the user object in awindow, add code to the Constructor
event to set theib_search instance variable to TRUE:

this.ib search = TRUE

Using autoselect

These editable controls feature automatic selection:

U_ddb
U_ddplb
U em

U mle
U de

When autoselect is enabled, PFC automatically selects all text in the control
when it receives focus.

By default, autoselect is disabled.

v To enable autoselect:

e After placing the user object in awindow, add code to the Constructor
event to set the ib_autoselect instance variable to TRUE:

this.ib autoselect = TRUE

PFC Library User’s Guide 133

Using standard visual user objects

Using selection inversion in list boxes

Theu_lb ListBox and the u_plb PictureListBox controls feature selection
inversion. When you call the control’s pfc_InvertSelect event, PFC highlights
previously unhighlighted items and unhighlights previously highlighted items.
Selection inversion is afeature found in many Windows 95 applications.

Extended select or multiselect)
To usethisfeature, you must enable either the Extended Select property or the

Multi Select property for the control.

To enable selection inversion, use either of the following techniques:

1 Addamenuitem that uses the message router to call the
pfc_InvertSelection event. This example adds an Invert Selection menu
item that calls the of_SendM essage function to trigger the
pfc_InvertSelection event (this method requires that the ListBox or
PictureListBox have focus when the user selects the menu item):

of SendMessage ("pfc InvertSelection")

2 Add awindow control that calls the pfc_InvertSelection event directly
(this example is from a CommandButton Clicked event):

1b choices.Event pfc_ InvertSelection()

Using the GetFocus event

\'

134

PFC standard visual controls include logic in the GetFocus event to provide
focus-related functionality. This event calls the window’s

pfc_Control GotFocus user event, which (when MicroHelp display is enabled)
updates MicroHelp for controls placed on descendants of w_sheet.

The w_sheet window extends the pfc_Control GotFocus user event to add
automatic MicroHelp display. Thisfeature displays text from the control’stag
value in the MDI frame's status bar.

To update MicroHelp automatically in a sheet window:

1 Cadll then_cst_appmanager of SetMicroHelp function to enable
MicroHelp display:

gnv_app.of SetMicroHelp (TRUE)

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

2 Definetag valuesfor each of the sheet’s controls. Use the following

format:
MicroHelp=tagtext

PFC uses the specified tag text to update MicroHel p automatically when
the control getsfocus. If there are multipleitemsin the tag, separate them
with semicolons.

Using advanced functionality

To get the most out of PFC, you need to program using advanced controls for
which PFC provides additional capabilities:

Control PFC visual user object
Datawindow U_dw

ListView U_lvs

TreeView U_tvs

RichTextEdit U_rte

OleControl U oc

Tab U_tab

Tab page U_tabpg

Using the u_dw DataWindow control

Most production-strength PowerBuilder applications make intense use of
Datawindow controls. The u_dw Datawindow control contains extensive
built-in methods including:

PFC Library User’s Guide

Functions to enable and disable DataWindow services

A function to set the Transaction object

Eventsto retrieve rows for DataWindows and DropDownDatawWindows
Eventsto control DataWindow update

Eventsto control printing

Integration with PFC menus))
Many of the events described in this section are called automatically by menus

that descend from the PFC m_master menu. For example, when you select
File>Save from the menu bar, PFC calls the pfc_Save event.

135

Using standard visual user objects

Enabling DataWindow
services

136

PFC provides avariety of DatawWindow services that you can use to add
production-strength features to an application. Many of these servicesrequire
little or no coding on your part.

To use DataWindow services:

1
2

Place the u_dw Datawindow visual user object on the window.

Determine which DataWindow services are appropriate for the
Datawindow object displayed in the u_dw-DatawWindow control.

Enabl e the appropriate DataWindow services, using the u_dw

of _Setservicename functions (this example from the Datawindow
control’s Constructor event enables the row selection, row management,
and sort services):

this.of SetRowSelect (TRUE)
this.of SetRowManager (TRUE)
this.of SetSort (TRUE)

Establish the Transaction object for the DataWindow:
this.of SetTransObject (SQLCA)

Call other functions as necessary to initialize services (this example sets
the row selection style, specifies the Sort dialog box style, and enables
column header sorting):

this.inv_rowselect.of_ SetStyle &
(this.inv_rowselect .EXTENDED)

this.inv_sort.of_ SetStyle &
(this.inv_sort.DRAGDROP)

this.inv_sort.of SetColumnHeader (TRUE)

Call Datawindow service events and functions as necessary in your
application’s functions and events. In many cases you don’'t have to code
anything to realize the service's benefits. This example callsthe
pfc_SortDlg event to display the Sort dialog box:

dw_list.Event pfc SortDlg()

Disabling services
The u_dw Destructor event destroys enabled services automatically. In

most cases you don’t destroy a service explicitly.

For specific usage information on individual DatawWindow services, see
“Datawindow services’ on page 63.

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Setting the
Transaction object

Retrieving rows

PFC Library User’s Guide

As shown in the preceding example, you establish a DataWindow’s
Transaction object by calling the u_dw of SetTransObject function.

The of _SetTransObject function ensures that the passed Transaction object is
valid, sets the Transaction object, and saves a reference to the Transaction
object intheitr_object instance variable.

The Transaction object must be of type n_tr.

When using the linkage service
For DataWindows that use the linkage service, call the n_cst_dwsrv_linkage

of _SetTransObject function on the top-level Datawindow after all
Datawindows have been created and you have established the linkage chain.

For more information on the linkage service, see “Linkage service” on page
71.

Because many DataWindow services rely on the u_dw pfc_Retrieve event to
retrieve data, it's best to code the PowerScript Retrieve function in the u_dw
pfc_Retrieve event. To retrieve rows, your code then callsthe u_dw

of Retrieve function, which calls either the pfc_Retrieve event or the
n_cst_dwsrv_linkage of _Retrieve function as appropriate.

To retrieve rows for a DataWindow:

1 Cadll the of_Retrieve function (this example is from a DataWindow
Constructor event):

Long 11 return

11 return = this.of Retrieve()

2 Add codeto the pfc_Retrieve event that calls the PowerScript Retrieve
function, returning the return code;

Return this.Retrieve()

Retrieving rows with the linkage service
When using the linkage service to retrieve detail DataWindow rows, code the

pfc_Retrieve function for the top-level DataWindow only. When using the
linkage serviceto filter or scroll detail DataWindow rows, code the
pfc_Retrieve event for all Datawindows in the linkage chain.

137

Using standard visual user objects

v To retrieve rows in a DropDownDataWindow:

1 Add codeto the Datawindow control’s pfc_PopulateDDDW event. This
code should retrieve rows for the specified DropDownDataWindow:

IF as_colname = "dept_ id" THEN
adwc_obj.SetTransObject (SQLCA)
Return adwc_obj.Retrieve ()

ELSE
Return 0

END IF

2 If the Datawindow control isusing no other DataWindow services, enable
n_cst_dwsrv the base DatawWindow service (this exampleis from the
Datawindow control’s Constructor event):

this.of SetBase (TRUE)
this.of SetTransObject (SQLCA)
this.of Retrieve()

3 Cdl then_cst_dwsrv of PopulateDDDWs or of PopulateDDDW
function to update all DropDownDatawWindows or a specified
DropDownDatawindow:

dw 1.inv_base.of PopulateDDDWs ()
// Alternatively, you could call:
// dw_1.inv base.of PopulateDDDW("dept id")

Controlling Basic DataWindow updates PFC provides two ways to update
DataWindow updates DataWindows:

« U_dw pfc_Update event Updates a single Datawindow without any
logical unit of work service processing, automatically calling the
n_cst_dwsrv_multitable of_Update function if the multitable update
serviceis enabled

+ W _master pfc_Save event Usesthelogical unit of work serviceto call
the u_dw of Updatefunction for all Datawindows on the window. For
non-PFC DataWindow controls, the logical unit of work service callsthe
PowerScript Update function

W_master is the ancestor of all PFC windows
Becausew_master isthe ancestor of all PFC windows, the pfc_Save event

isavailableto all windows in your application.

138 PowerBuilder

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide

To update a single DataWindow:
e Cadl theu_dw pfc_Update event:

IF dw_emplist.Event pfc Update &
(TRUE, TRUE) = 1 THEN
SQLCA.of Commit ()
ELSE
SQLCA.of Rollback ()
END IF

To update all DataWindows on a window:
e Cal thew_master pfc_Save event:

Integer 1li return

1li return = w_emp.Event pfc Save()
IF 1i return < 0 THEN
MessageBox ("Update Failed", &
"Update failed. Return code was " &
+ String(li_ return))
ELSE
gnv_app.of GetFrame () .SetMicroHelp &
("Update succeeded")
END IF

Automatic CloseQuery processing .
If any of awindow’s DataWindows has pending updates and the user closesthe

window, PFC displays a Save Changes dialog box automatically. If the user
chooses to save changes, CloseQuery processing callsthe window’s pfc_Save
event.

For moreinformation on using pfc_Save, see“Using the pfc_Save process’ on
page 195.

Declaring nonupdatable DataWindows You can declare a Datawindow as
nonupdatable, thus removing it from the pfc_Save update sequence and the
PFC default CloseQuery processing.

Shared DatawWindows
If your window includes DataWindows that share data, only one DatawWindow

control should be updatable. All othersthat share data should be nonupdatable.

139

Using standard visual user objects

Printing DataWindows

140

To declare a DataWindow as nonupdatable:
o Cdl theu_dw of SetUpdatable function:

dw_emplist.of SetUpdateable (FALSE)
PFC provides events that allow you to print Datawindows. You can:
« Display aPrint dialog box, allowing you to choose options before printing

PFC usesthe s _printdlgattrib structure to pass DataWindow properties to
then_cst_platform of _PrintDIg function. You can usethe pfc_PrePrintDlg
event to further customize theinitial contents of the Print dialog box by
modifying elementsin the s_printdlgattrib structure.

Theelementsinthes_printdlgattrib structurereflect sel ected DatawWindow
Print properties (such as collate, page numbers, and number of copies).

e Print a Datawindow without displaying the Print dialog box
» Display aPage Setup dialog box that allows you to specify print settings

PFC usesthe s _pagesetupattrib structure to pass Datawindow properties
tothen_cst_platform of _PageSetupDIg function. You can use the
pfc_PrePageSetupDIg event to further customizetheinitial contents of the
Page Setup dialog box by modifying elementsinthe s _pagesetupdlgattrib
structure.

The elementsin the s_pagesetupattrib structure reflect selected
Datawindow Print properties (such as margins, paper size, and
orientation).

To display the Print dialog box:

1 (Optional) Add codeto the pfc_PrePrintDlg event to modify the
information used by the pfc_PrintDIg function (this example provides a
default for the number of copies specification):

astr printdlg.l copies =1
2 Cadll the pfc_Print event:

dw_emp.Event pfc Print ()

To print a DataWindow without displaying the Print dialog box:
e Cdl the pfc_Printimmediate event:

dw_emp.Event pfc PrintImmediate ()

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

\

Comparing File>Print with the Print button
When you select File>Print from the menu bar, PFC calls the pfc_Print

event. When you click the Print toolbar button, PFC callsthe
pfc_Printimmediate event.

To display the Page Setup dialog box:

1

(Optional) Add code to the pfc_PrePageSetupDIg event to modify the
information used by the pfc_PageSetupDlg function (this example
specifiestheinitial value for the orientation specification):

astr pagesetup.b portraitorientation = TRUE

2 Cdl the pfc_PageSetup event:

dw_emp.Event pfc PageSetup ()

Using the u_lvs ListView control

The u_lvsListView control makesit easy for you to display and update
database datain a ListView. U_lvsincludes services that you enable to obtain
the features you need:

Displaying database
data in a ListView

PFC Library User’s Guide

Base service Providesfind functionality and other basic services

Data source service Controlsthedisplay and update of database datain
aListView. Also controls the bitmaps displayed with ListView data

Sort service Provides column-header sort functionality (report view
only)

The u_lv ListView control
PFC also includes u_lv, anon-service-based ListView that includes many of

the same features as u_Ivs. U_Iv wasthe PFC ListView control in previous
releases and is not documented here.

You use the ListView data source service to associate a ListView with adata
source (not to be confused with an ODBC data source). A data source can be:

Datawindow object (using either dataretrieved from the database or data
stored with the DataWindow object)

SQL statement
Datawindow control

DataStore control

141

Using standard visual user objects

142

* Rowsfrom an array
« Afile

The ListView data source service (implemented through the
n_cst_lvsrv_datasource custom class user object) maintainsthe ListView's
data source in a DataStore and uses it to popul ate the ListView. You can also
specify which columns from the DataWindow object should display when the
ListView isin Report view.

To establish the initial ListView display:
1 Addau_lvsuser object to the window.

2 Enablethe ListView data source service (this example also enables the
ListView sort service):

this.of SetDataSource (TRUE)
this.of SetSort (TRUE)

3 Cdl then_cst_lvsrv_datasource of _Register function. This example
specifies the DataWindow object, Transaction object, and label column
(this example isfrom a ListView Constructor event):

this.inv datasource.of Register("emp lname", &
"d emplist", SQLCA)

The ListView data source service usesthe DataWindow caching serviceto
maintain the data.

4 (Optional) Specify whether right mouse button support is enabled:
this.of SetRMBMenu (TRUE)

5 (Optional) Specify additional columnsto display in Report view (this
example displays all columns) and establish picture information:

this.inv datasource.of RegisterReportColumn ()
this.inv _datasource.of SetPictureColumn("1")

6 (Optional) Declarethe ListView as eligible for update viathe logical unit
of work service and the w_master pfc_Save process.

this.of SetUpdateable (TRUE)
7 (Optional) Specify whether PFC asks the user to confirm deletions:
this.inv _datasource.of SetConfirmOnDelete (TRUE)
8 Retrieve data from the database and add rows to the ListView:

this.Event pfc_ Populate()

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Deleting items from
the ListView

PFC Library User’s Guide

9 Extend the pfc_Retrieve event, adding code that calls the of Retrieve
function, which allows you to specify retrieval arguments:;

Any la_args([20]

Return this.of Retrieve(la_args, ads_data)

You can deleteitemsfrom the ListView, optionally deleting them from the data
source and the database.

To remove items from the ListView, allowing them to remain in the u_Ivs
DataStore and the database:

1 EnabletheListView's Delete Items property.
2 Cadll the PowerScript Deleteltem function:

Integer 1li index
1i index = 1lv_list.SelectedIndex()

lv_list.DeleteItem(li index)

Redisplaying deleted rows
Toredisplay all rowsin the data source, call the of Reset function followed by

the pfc_Populate event.

To delete selected items from the ListView and the database:
1 EnabletheListView's Delete Items property.
2 Cdl the pfc_Delete event:

lv_1.Event pfc Delete()

3 Call thelogica unit of work service of _Save function to update the
database (this example is from a user event defined for the ListView
control):

PowerObject 1lpo_obj[]
n tr 1ltr objl[]

IF NOT IsValid(inv_luw) THEN
inv_luw = CREATE n_cst_luw

END IF
lpo obj[1] = this
ltr obj[1] = SQLCA

// Error processing omitted to save space
inv_luw.of Save(lpo obj, ltr obj)

143

Using standard visual user objects

Inserting items into
the ListView

Using pictures

144

You can use a ListView to insert items into the database. But because the
ListView control allows updates to the label column only, you cannot add
information into all the columns displayed in Report view. To get around this,
you need another mechanism (such as a dialog box) to acquire enough
information to update the DataWindow, the ListView, and the database.

To insert arow into the database using a ListView:

1 Create amechanism (such as a dialog box) that collects information
needed to add a new row.

2 Usetheinformation you gathered to call the of _Insertltem function. This
exampl e assumes you added information to atemporary DataStore, which
isused asinput to of_Insertltem:

lv_dept.of InsertItem(ids newrow, 1)
ListViewsallow you to specify up to three different picturesto display with an
item:
« Default picture Animage that appears with aListview item
« State picture Animage that appearsto the left of the original image

e Overlay picture Animage (typically anicon or cursor) that appears on
top of aListView item'’s original image, indicating a difference between
the ListView item and other items

U_lvsalowsyou to set up the initial picture display using the following:

« Pictureindex Eachindex entry pointsto abitmap file or PowerBuilder
system bitmap that the ListView uses for picture display. You define
entries in the picture index using the ListView's property sheet. This
approach resultsin all ListView items displaying the same picture

« Datawindow column A column specifying row-specific display
information. The column can come directly from the database or can be a
Datawindow computed column. It can contain either of the following:

e A dtring specifying the name of a bitmap file that the ListView uses
when displaying the corresponding row

« Aninteger specifying the picture index the ListView uses when
displaying the corresponding row

Using a DatawWindow column allows you to customize ListView item
display.
For more on ListViews, see Application Techniques.

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide

To use the picture index to specify ListView pictures:
1 Establishthe picture index using the ListView’'s property sheet.

2

Enable the ListView data source service:

this.of SetDataSource (TRUE)

3 Specify the appropriate picture index entries by calling

n_cst_Ivsrv_datasource functions, passing the picture index:

this.inv_datasource.of SetPictureColumn('1l")
this.inv_datasource.of SetOverlayPictureColumn('l")
this.inv_datasource.of SetStatePictureColumn('l')

To use DataWindow columns to specify ListView pictures:

1

Establish database or DatawWindow columns and popul ate them with
bitmap names (String or Character data type) or picture index
specifications (Integer data type).

Enable the ListView data source service:
this.of SetDataSource (TRUE)

Specify the appropriate pictures by calling n_cst_Ivsrv_datasource
functions, passing the DatawWindow column names:

this.inv_datasource.of SetPictureColumn &
('picture name')

this.inv_datasource.of SetOverlayPictureColumn &
('picture overlay')

this.inv_datasource.of SetStatePictureColumn &
('"picture state')

Bitmaps must exist) o .)
Thefiles named in the retrieved rows must exist in adirectory accessible

to the application.

145

Using standard visual user objects

Using the u_tvs TreeView control

Basic use

146

The u_tvs TreeView control makes it easy for you to use Datawindows to
display and update hierarchical database datain a TreeView. U_tvsincludes
services that you enable to obtain the features you need:

« Baseservice Providesbasic services

« Level source service Controlsthe display and update of database data
inaTreeView level. Also controls the bitmaps displayed with TreeView
data

The u_tv TreeView control
PFC aso includes u_tv, anon-service-based TreeView that includes many of

the same features as u_tvs. U_tv was the PFC TreeView control in previous
releases and is not documented here.

You use the TreeView level source service to associate each TreeView level
with a data source (not to be confused with an ODBC data source). A data
source can be:

» Datawindow object (using either data retrieved from the database or data
stored with the DataWindow object)

e SQL statement

» Datawindow control
» DataStore control

* Rowsfrom an array
« Afile

The TreeView level source service (implemented through the
n_cst_tvsrv_levelsource custom class user object) maintains each TreeView
level’s data source in a DataStore and uses it to populate the TreeView level.

Establishing the level's data source You establish alevel’s data source by
calingthen_cst_tvsrv_levelsource of _Register function. This function
includes an argument that specifies how alevel relatesto the levels aboveit.
This argument must be in the format :scope.level.column where:

e Scope specifies one of the following literals:
e Levd
e Parent

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide

e Level specifies an absolute or relative level
you specify for scope:

number, depending on what

Scope
specification | Level specification Example
Level The value you specify :level.1l.emp nameindicates
indicatesan absolutelevel | that theretrieval argument is
number from the emp_name column of
theitem’slevel-1 ancestor
Parent The value you specify :parent.2.emp_name
indicates alevel relative | indicatesthat the retrieval
to the current level argument comes from the
emp_name column of the
ancestor two levels above

e Column specifies the Datawindow object column name from which to
obtain the values used in retrieval arguments.

For example, the following string specifies that the retrieval argument isfrom
the emp_name column of the item’s level-1 ancestor:

:level.l.emp name

Multiple retrieval arguments
If a DataWindow object has multiple retrieval arguments, you specify the

scope.level .column argument multiple times within the same string. For
example, thefollowing string specifiesthat theretrieval argumentsare fromthe
region column two levels higher and the states_state id column one level
higher:

":parent.2.region, :parent.l.states_state id"

To display a TreeView:
1 Addau_tvsuser object to the window.

2 Enablethelevel source service using theu tvsof Setl evel Source
function:

this.of SetLevelSource (TRUE)

3 Define adata source for each TreeView level by calling the of Register
function, once for each level:

this.inv_levelsource.of Register(l, &

"dept name", "", "d deptlist", SQLCA, "")

147

Using standard visual user objects

Deleting items from a
TreeView

148

this.inv levelsource.of Register (2, "emp lname", &
":parent.l.dept id", "d empbydept", SQLCA, "")

4 Call additional functions as necessary to control TreeView behavior:

this.inv levelsource.of SetPictureColumn(1l, "1")

this.inv_levelsource.of SetSelectedPictureColumn &
(ll nzn)

this.inv levelsource.of SetPictureColumn (2, "4")

this.inv levelsource.of SetSelectedPictureColumn &
(2[11511)

5 (Optional) Specify whether right mouse button support is enabled:
this.of SetRMBMenu (TRUE)

6 (Optional) Declarethe TreeView aseligible for update viathelogical unit
of work service and the w_master pfc_Save process:

7 Populate the TreeView by calling the u_tvs pfc_Populate event:
this.event pfc Populate(0)

8 Extend the pfc_Retrieve event, adding code that callsthe of Retrieve
function, specifying retrieval arguments as returned by the
n_cst_tvsrv_levelsource of GetArgs function:;

Any la_args[20]

Integer 1i level

IF IsValid(inv_levelsource) THEN
1i level = this.of GetNextLevel (al parent)
this.inv_levelsource.of GetArgs(al_ parent, &
1i_level, la_args)

END IF

Return this.of Retrieve(al parent, la args, &
ads_data)

You can delete items from the TreeView, optionally deleting them from the
data source and the database.

To remove items from the TreeView (allowing them to remain in the data
source and the database):

1 Enablethe TreeView's Delete Items property.
2 Cadll the PowerScript Deleteltem function:

Long 11 tvi

11 tvi = this.FindItem(CurrentTreeItem!, 0)

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Inserting items into a
TreeView

PFC Library User’s Guide

Redisplaying deleted rows
To redisplay these rows, call the u_tvs pfc_RefreshLevel event.

To delete items from the TreeView and the database:
1 Enablethe TreeView’s Delete Items property.
2 Cdl the pfc_Delete event:

tv_1.Event pfc Delete()

3 Call thelogical unit of work service of _Save function to update the
database (this example is from a user event defined for the TreeView
control):

PowerObject 1po obj[]
n tr ltr objl[]

IF NOT IsValid(inv_luw) THEN
inv_luw = CREATE n cst luw

END IF
lpo obj[1l] = this
ltr obj[1] = SQLCA

// Error processing omitted to save space
inv_luw.of Save(lpo obj, ltr obj)

You can use a TreeView to insert new itemsinto the database. But because the
TreeView control displaysasinglefield only, you typically need another
mechanism (such as a dialog box) to acquire enough information to update the
Datawindow, the TreeView, and the database.

To insert arow into the database using a TreeView:

1 Create amechanism (such as a dialog box) that collectsinformation
needed to add a new row.

2 Usetheinformation you gathered to call the of _Insertitem function. This
example assumes you added information to atemporary DataStore, which
isused asinput to of_|nsertitem:

Long 11 handle
TreeViewItem 1ltvi item
Long 11 return

11 handle = tv_1.FindItem(CurrentTreeItem! , 0)

11 return = tv_1.of InsertlItem &
(11 _handle, ids _data, 1, "Sorted", 0)

149

Using standard visual user objects

Using recursion to
populate a TreeView

150

Theu_tvsTreeView control allowsyou to display multiplelevelsfrom asingle
tablethat hasarecursiverelationship. Inthe employeetable, for example, there
might be arecursive relationship between managers and empl oyees, with each
employee row containing a column that points to its manager’s employee ID.

You indicate a recursive relationship through an argument to the
n_cst_tvsrv_levelsource of Register function. A recursive level is awaysthe
lowest level specified.

To use recursion to populate a TreeView:

1 Create DatawWindow objects to display high-level information aswell as
the recursive data. In the table that follows, the d_empmanagerrecursive
Datawindow object handles all levels of manager below the department
head using recursive data:

DataWindow object Contents Pseudo WHERE clause
d_dept Departments None
d_empdeptmanager Department heads employee.emp_id =

department.dept_head_id
d_empmanagerrecursive | Managers and their | employee.manager_id =
employees manager.emp_id

2 Create awindow that has a TreeView based on u_tvs.
3 Enablethelevel source service:
this.of SetLevelSource (TRUE)

4 Call the of_Register function to establish the hierarchy and recursive
levels. Then call the pfc_Populate function to retrieve data (this example
is from the TreeView’s Constructor event):

this.inv_levelsource.of Register(l, "dept name", &
LI d_dept ", SQLCA, ")
this.inv levelsource.of Register(2, &
"dept head id", ":Level.l.dept head id", &
"d empdeptmanager", SQLCA, "")
this.inv_levelsource.of Register (3, "emp_ lname", &
":Parent.l.emp id", "d empmanagerrecursive", &
sQLca, ")

5 Cdlthen_cst tvsrv_levelsourceof SetRecursive function for the bottom
level:

this.inv_ levelsource.of SetRecursive (3, TRUE)

6 Code other processing as necessary.

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Using pictures

PFC Library User’s Guide

A TreeView consists of items that are associated with one or more pictures,
which are used in different ways:

Picture Usage

Default Represents a TreeView item in its normal mode

Selected Represents a selected TreeView item

State Appearsto theleft of the TreeView item indicating that theitem
isnot initsnormal mode, for example changed or unavailable

Overlay Appearson top of a TreeView item

For more on how you specify pictures, see “Using pictures’ on page 144.

To use the picture index to specify TreeView pictures:

1

Using either the Window painter or the User Object painter, specify
default picturesfor the TreeView. PFC uses this picture index for defaullt,
selected, and overlay pictures.

Using either the Window painter or the User Object painter, specify state
pictures for the TreeView.

Enable the level source service:
this.of SetLevelSource (TRUE)

Associate pictures with TreeView levels by calling
n_cst_tvsrv_levelsource functions:

this.inv_levelsource.of SetPictureColumn(1l, "1")

this.inv_levelsource.of SetSelectedPictureColumn &
(ll ll2ll)

this.inv_levelsource.of SetPictureColumn(2, "4")

this.inv_levelsource.of SetSelectedPictureColumn &
(2[11511)

To use DataWindow columns to specify TreeView pictures:

1

Establish database or DataWindow columns and popul ate them with
bitmap names (String or Character data type) or picture index
specifications (Integer data type).

Enable the TreeView level source service:
this.of SetLevelSource (TRUE)

Specify the appropriate pictures by calling n_cst_tvsrv_levelsource
functions, passing the Datawindow column names:

this.inv_levelsource.of SetPictureColumn &
(1, 'picture name')

151

Using standard visual user objects

Coordinating a
TreeView and other
controls

152

this.inv levelsource.of SetSelectedPictureColumn &
(1, 'picture overlay')

Bitmaps must exist
The files named in the retrieved rows must exist in adirectory accessible

to the application.

For more information on TreeView pictures, see the PowerBuilder User’s

Guide.

One of the most popular uses for TreeViews isto perform coordinated
processing with aListView. The Microsoft Explorer is an example of thistype

of usage.

Another powerful possibility isto coordinate processing between a TreeView
and a Datawindow.

To coordinate a TreeView and a ListView:

1

Create DatawWindow objects to display information for al levels of the
TreeView (this example uses region, state, customer, and employee
information from the PFC example database).

Createawindow that hasa TreeView based onu_tvsand aListView based
onu_lvs.

Define pictures for the TreeView and ListView.

Enable the TreeView level source service:

this.of SetLevelSource (TRUE)

Register level source information for all TreeView levels (thisexampleis
from the TreeView Constructor event):

this.inv levelsource.of Register(l, &
"sales regions region", "", "d region", &
SQLCA, " ")
this.inv levelsource.of SetPictureColumn(1l, "1")
this.inv_levelsource.of SetSelectedPictureColumn &
(1, "7m)
this.inv levelsource.of Register(2, &
"states_state_name", &

":parent.l.sales regions region", &
"d regionstate", SQLCA, "")

this.inv levelsource.of SetPictureColumn(2, "2")
this.inv levelsource.of SetSelectedPictureColumn &
(2[ll7ll)

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

this.inv_levelsource.of Register(3, &
"customer_company name", &
":parent.2.sales regions_region, &
:parent.l.states_state_id", &

"d regionstatecust", SQLCA, "")
this.inv_levelsource.of SetPictureColumn(3, "3")
this.inv_levelsource.of SetSelectedPictureColumn &

(3[||7||)

this.inv_levelsource.of Register(4, &
"employee emp lname", ":parent.l.customer id", &
"d regionstatecustrep", SQLCA, "")
this.inv_levelsource.of SetPictureColumn(4, "4")
this.inv_levelsource.of SetSelectedPictureColumn &
(4[n7n)

this.inv_levelsource.of Register(5, &
"order id string", ":parent.2.customer id, &
:parent.l.employee emp id", &

"d regionstatecustrepord", SQLCA, "")
this.inv_levelsource.of SetPictureColumn(5, "5")
this.inv_levelsource.of SetSelectedPictureColumn &

(5[n7n)

6 Cadl the pfc_Populate event:
this.Event pfc_Populate (0)
7 Extend the pfc_Retrieve event:
Any la_args[20]

Integer 1i level

IF IsValid(inv_levelsource) THEN
1i level = of GetNextLevel (al parent)
inv_levelsource.of GetArgs(al parent, &
1i level, la args)
END IF
Return of Retrieve(al parent, la_args, ads_data)

8 Extend the TreeView's SelectionChanged event to call the ListView's
pfc_Populate event:

lv_1.Event pfc Populate ()

PFC Library User’s Guide 153

Using standard visual user objects

9 EnableListView services and specify processing options (this exampleis
from the ListView Constructor event):

this.of SetDataSource (TRUE)

this.of SetSort (TRUE)

this.inv_sort.of SetColumnHeader (TRUE)
this.of SetRMBMenu (TRUE)

10 Overridethe ListView's pfc_Populate event:

Integer 1i_RC, 1i_1level

Long 11 handle

String 1s_dataobject

String 1s_labelcolumn, ls picturecolumn
TreeViewItem ltvi_selecteditem

n tr ltr obj

n_cst_tvsrvattrib Inv_tvattrib

// Display current tree item children in the LV
11 handle = tv_1.FindItem(CurrentTreeItem!, O0)
tv_1.GetItem(ll handle, 1ltvi selecteditem)

1i level = ltvi_selecteditem.Level + 1

// Normal registration

ls dataobject = &
tv_1.inv_levelsource.of GetDataObject (1i level)
ls_labelcolumn = &

tv_1.inv_levelsource.of GetLabelColumn(li_ level)
ls_picturecolumn = &
tv_1.inv levelsource.of GetPictureColumn &
(1i level)
tv_1.inv levelsource.of GetTransObject (1li level, &
ltr obj)

// Level 3 registration.
tv_1.inv levelsource.of GetLevelAttributes &
(1i_level, 1lnv_tvattrib)

// Set the ListView items
Choose Case 1ltvi_selecteditem.Level

Case 1
1i RC = 1v_1.inv datasource.of Register &
(1s_labelcolumn, ls dataobject, ltr obj)
1i RC = &

lv_1.inv _datasource.of SetPictureColumn &
(1s_picturecolumn)

154 PowerBuilder

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide

Case 2
1i RC = 1lv_1.inv_datasource.of Register &
(1s_labelcolumn, ls_dataobject, ltr_obj)
1i RC = &
lv_1.inv datasource.of SetPictureColumn &
(1s_picturecolumn)
Case 3
1i RC = 1v_1.inv datasource.of Register &
(Inv_tvattrib.is_ labelcolumn, &
Inv_tvattrib.is_dataobject, &
Inv_tvattrib.itr obj)
1i RC = &
lv_1.inv datasource.of SetPictureColumn &
(Inv_tvattrib.is picturecolumn)
Case 4
1i_ RC = 1v_1.inv datasource.of Register &
(1s_labelcolumn, ls_dataobject, ltr obj)
1i RC = &
lv_1.inv datasource.of SetPictureColumn &
(1s_picturecolumn)
Case 5 // Not in the tree so register normally
1i_ RC = 1v_1.inv datasource.of Register &
("product description", &
"d regionstatecustreporditm", SQLCA)
1i RC = &
lv_1.inv datasource.of SetPictureColumn &
("product picture name")
End Choose
// Add all the visible columns of the datasource
// to the report view.
lv_1.inv datasource.of RegisterReportColumn ()

Return Super::Event pfc Populate()

11 ExtendthelListView's pfc_Retrieve event:

Long 11 handle
Any la args[20]
TreeViewItem tvi item

11 handle = tv_1.FindItem(CurrentTreeItem!, O0)
tv_1.GetItem(ll handle, 1ltvi item)

If 1tvi item.Level < 5 Then

tv_1.inv_levelsource.of GetArgs &
(11 _handle, (ltvi item.Level + 1), la Args)

155

Using standard visual user objects

Else
la Args[1l] = Integer(ltvi item.Label)
End If

Return of Retrieve(la_args, ads_data)

12 Add codeto the ListView’s DoubleClicked event to coordinate display
with the TreeView:

Integer 1i level

Long 11 currenttvitem, 11 selectedtreehandle
String 1s_lvlabel

ListViewItem 1lvi selectedlvitem
TreeViewItem 1ltvi newtreeitem

TreeViewItem ltvi_ startingtreeitem

// Get the ListView item that was doubleclicked.
this.GetItem(index, 1llvi selectedlvitem)
1s lvlabel = 1lvi selectedlvitem.label

// Determine which TreeView item is currently
// selected and get it.
11 currenttvitem = tv_1.FindItem &
(CurrentTreeltem!, 0)
tv_1.GetItem(ll currenttvitem, &
ltvi startingtreeitem)

// Set a local variable to the level of the
// currently selected TreeView item.
1i level = 1ltvi startingtreeitem.level

// Determine if the currently selected TreeView

// item has been expanded. If it hasn't, expand it.

// (expanding also populates). This loads the

// TreeView with the ListView information.

IF ltvi startingtreeitem.expanded = FALSE THEN
tv_1.ExpandItem(ll currenttvitem)

END IF

// Get the handle of the TreeView item that
// corresponds to the ListView item that was
// doubleclicked.
11 selectedtreehandle = &
tv_1.inv _base.of FindItem ("label", 1ls_lvlabel, &
11 currenttvitem, (1i level + 1), TRUE, TRUE)

// Get the state information of the TreeView item

156 PowerBuilder

CHAPTER 5 Using PFC Visual Controls

// that corresponds to the ListView item that was
// doubleclicked.
tv_1.GetItem(ll_selectedtreehandle, &

ltvi newtreeitem)

// Select and Expand the selected TreeView item.
IF ltvi newtreeitem.expanded = FALSE THEN
tv_1.SelectItem(ll selectedtreehandle)
tv_1.ExpandItem(ll selectedtreehandle)
END IF

v To coordinate a TreeView and a DataWindow control:

1 Create DatawWindow objectsto display information for all levels of the
TreeView (this example uses region, state, customer, and employee
information from the PFC example database).

2 Create awindow that has a TreeView based on u_tvs and a Datawindow
based on u_dw.

Define pictures for the TreeView.
4 Enablethe TreeView level source service:
this.of SetLevelSource (TRUE)

5 Register level sourceinformation for all TreeView levels (thisexampleis
from the TreeView Constructor event):

this.inv_levelsource.of Register(l, &
"sales_regions_region", "", "d region", &
sQLca, ")
this.inv_levelsource.of SetPictureColumn(1l, "1")
this.inv_levelsource.of SetSelectedPictureColumn &
(1, ll7ll)

this.inv_levelsource.of Register(2, &
"states_state_name", &
":parent.l.sales regions region", &

"d regionstate", SQLCA, "")
this.inv_levelsource.of SetPictureColumn(2, "2")
this.inv_levelsource.of SetSelectedPictureColumn &

(2[||7||)

this.inv_levelsource.of Register(3, &
"customer company name", &
":parent.2.sales regions region, &
:parent.l.states_state id", &
"d regionstatecust", SQLCA, "")

PFC Library User’s Guide 157

Using standard visual user objects

this.inv levelsource.of SetPictureColumn(3, "3")

this.inv levelsource.of SetSelectedPictureColumn &
(3, ll7ll)

this.inv_levelsource.of Register (4, &
"employee emp lname", ":parent.l.customer id", &

"d regionstatecustrep", SQLCA, "")

this.inv levelsource.of SetPictureColumn (4, "4")

this.inv_levelsource.of SetSelectedPictureColumn &
(4[||7||)

this.inv levelsource.of Register(5, &
"order id string", ":parent.2.customer id, &

:parent.l.employee emp id", &
"d regionstatecustrepord", SQLCA, "")

this.inv levelsource.of SetPictureColumn(5, "5")
this.inv_levelsource.of SetSelectedPictureColumn &
(5, ll7ll)

6 Cdl the pfc_Populate event:
this.Event pfc Populate(0)
7 Extend the pfc_Retrieve event:

Any la_args[20]
Integer 1i level

IF IsValid(inv_levelsource) THEN
1i level = of GetNextLevel (al parent)
inv_levelsource.of GetArgs(al parent, &
1i level, la_args)
END IF
Return of Retrieve(al_parent, la_args, ads_data)

8 Extendthe TreeView’s SelectionChanging event to reset the Datawindow
control’s DataObject property and populate it with the selected TreeView
item:

n_ds 1lds_datastore

TreeViewItemltvi new
Long 11 dsrow

// Get the DataStore and row for the new item
IF inv_levelsource.of GetDataRow(newhandle, &
lds_datastore, 11 dsrow) = -1 THEN
MessageBox ("Error", &
"Error in of GetDataRow", Exclamation!)
END IF

158 PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Printing a TreeView

// Set dw_1 to use the new DataStore
dw_1.Reset ()
dw_1.DataObject = lds_datastore.DataObject

// Copy the row for the selected item

// in the DataStore.

lds_datastore.RowsCopy (1l dsrow, 11 dsrow, &
Primary!, dw 1, 1, Primary!)

// Set status flag of new row to what
// it was in the TreeView level datasource.
// The new row is copied as NewModified!
CHOOSE CASE lds_datastore.GetItemStatus &
(11 dsrow, 0, Primary!)
CASE New!
dw 1.SetItemStatus(l, 0, Primary!, NotModified!)
CASE DataModified!
dw_1.SetItemStatus(l, 0, Primary!, DataModified!)
CASE NotModified!
dw_1.SetItemStatus(l, 0, Primary!, DataModified!)
dw _1.SetItemStatus(l, 0, Primary!, NotModified!)
END CHOOSE

U_tvsallowsyouto print TreeViews, optionally displaying acancel dialog box
and customized level pictures.

To print a TreeView:
1 Enablethe TreeView print service:

tv_deptemp.of SetPrint (TRUE)
2 Cdl theof PrintTree function:

tv_deptemp.inv print.of PrintTree()

Using the u_rte RichTextEdit control

PFC Library User’s Guide

You use the PowerBuilder RichTextEdit control to enhance an application with
word processing capabilities. The PFC u_rte control makesit easier for you to
work with a RichTextEdit control. U_rte allows you to:

« Display new documents, optionally inserting them into the current
document

* Insert picturesinto documents, optionally displaying a dialog box
prompting the user for the filename

159

Using standard visual user objects

Displaying rich text
documents

Inserting pictures

160

* Print documents
e Add Find and Replace capabilities to a RichTextEdit control
e Control text properties

For complete information on the PowerBuilder RichTextEdit control, see the
PowerBuilder User’s Guide and Application Techniques.

U_rte provides events that allow the user to specify the rich text document to
open:

« pfc_Open Replacesthe current document with the selected document,
prompting the user before discarding the current document

« pfc_InsertFile Insertsthe selected document into the current document.
The RichTextEdit control replaces the current selection when thefileis
inserted

You can aso populate the RichTextEdit control by calling the PowerScript
InsertDocument function.

To display a document (replacing the current document):
e Cdl the pfc_Open event:
rte doc.Event pfc Open()
To insert a document into the current document:
» Cdl the pfc_InsertFile function:

rte doc.Event pfc InsertFile()

The InsertDocument PowerScript function
You can also call the PowerScript InsertDocument function to display a

document. If you use this function to display afile in an empty control, you
must also call the of_SetFileName function to specify the name of the file
associated with the RichTextEdit control.

U_rte provides an event that displays a dialog box for the user to choose a
bitmap to insert at the current cursor position. The RichTextEdit control
replaces the current selection when the bitmap isinserted.

To display the Insert Picture dialog box:

e Cdl the pfc_InsertPicture event:

rte doc.Event pfc InsertPicture()

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Tracking the picture’s filename
If you want to track the filename of the inserted picture, call the

of _InsertPicture function instead of the pfc_InsertPicture event.

Printing rich text U_rte provideseventsthat allow you to print the datain RichTextEdit controls.
documents You can:

« Display aPrint dialog box, allowing you to choose options before printing

PFC usesthe s _printdlgattrib structure to pass properties to the
n_cst_platform of_PrintDIg function. You can use the pfc_PrePrintDIg
event to further customize the contents of the Print dialog box by
modifying elementsin the s_printdigattrib structure.

Thevauesin the s printdlgattrib structure reflect selected RichTextEdit
Print properties (such as collate, page numbers, and number of copies).

* Print aRichTextEdit control without displaying the Print dialog box

U_rte aso provides functions that allow you to control the printing of page
numbers.

v To display the Print dialog box:

1 (Optional) Add codeto the pfc_PrePrintDlg event to modify the
information used by the pfc_PrintDIg function (this example provides a
default for the number of copies specification):

astr printdlg.l copies =1
2 Cadll the pfc_Print event:
rte doc.Event pfc Print ()
v To print a RichTextEdit control without displaying the Print dialog box:
e Cal the pfc_Printimmediate event:

rte doc.Event pfc PrintImmediate ()

v To control the printing of page numbers:

1 (Optional) Specify the page number upon which page numbers should first
appear. For example, many styles suppress the page number on the first
page of a document:

rte doc.of SetStartPageNumber (2)

PFC Library User’s Guide 161

Using standard visual user objects

2 ldentify the name of thefield into which PFC placesthe page number (this
exampl e assumes an input field named PAGENUM):

rte doc.of SetPagelInputField ("PAGENUM")

v To print continuous pages when sharing data with a DataWindow or
DataStore:

1 Perform all the steps necessary for the RichText file to share datawith the
Datawindow or DataStore:

ids_empdata = CREATE n_ds

ids empdata.DataObject = "d sharerte"

ids _empdata.of SetTransObject (SQLCA)

IF ids_empdata.Retrieve() = -1 THEN
MessageBox ("Retrieve", "Retrieve error")

END IF

rte doc.DataSource (ids empdata)
2 Cdl the of _SetContinuousPages function:

rte doc.of SetContinuousPages (TRUE)
3 Print the document:

rte doc.Event pfc Print()

For moreinformation on sharing data between a RichTextEdit control and
aDatawindow or DataStore, see Application Techniques.

Using the RTE find U_rte features afind and replace service that you can use to enhance a

service RichTextEdit control. Once the service is enabled, PFC displays Find and
Replace dia og boxes when the user selects Edit>Find or Edit>Replace from
the menu bar of a menu that descends from the PFC m_master menu and the
RichTextEdit control has focus.

You can also display Find and Replace dialog boxes programmatically.
v To display the Find dialog box:
1 EnabletheFind service:
rte doc.of SetFind (TRUE)
2 Cdl the pfc_FindDlg event:

rte doc.Event pfc FindDlg()

162 PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Controlling text
properties

v To display the Replace dialog box:
1 Enablethe Find service:

rte doc.of SetFind (TRUE)
2 Cadl the pfc_ReplaceDIg event:
rte doc.Event pfc ReplaceDlg()

U_rte alows you to access properties for selected text in a RichTextEdit
control. Thisfeature allows you to change a single property at atime, leaving
the other properties asis. This differs from the PowerScript SetTextStyle
function, which requires that you specify all possible text properties.

v To set text properties:

1 (Optional) Establish a mechanism that allows the user to specify text
properties (the example ahead uses checkboxes).

2 Cdl theof SetTextStylexxx functions to set text properties:

SetRedraw (FALSE)

rte doc.of SetTextStyleBold(cbx bold.Checked)

rte doc.of SetTextStylelItalic(cbx italic.Checked)

rte doc.of SetTextStyleUnderline &
(cbx_underline.Checked)

rte doc.of SetTextStyleStrikeout &
(cbx_strikeout.Checked)

rte doc.of SetTextStyleSubscript &
(cbx_subscript.Checked)

rte doc.of SetTextStyleSuperscript &
(cbx_superscript.Checked)

SetRedraw (TRUE)

v To access text properties:
1 (Optional) Establish a mechanism that displays text properties (the
example ahead uses checkboxes).
2 Cdl theof GetTextStyle function:

n_cst_textstyleattrib lnv_style

rte_doc.of GetTextStyle &
(1nv_style)
cbx _bold.Checked = 1lnv_style.ib bold
cbx _italic.Checked = lnv_style.ib italic

PFC Library User’s Guide 163

Using standard visual user objects

cbx underline.Checked = &

Inv_style.ib underlined
cbx_strikeout.Checked = lnv_style.ib_strikeout
cbx_subscript.Checked = lnv_style.ib_subscript
cbx superscript.Checked = &

Inv _style.ib superscript

Using the u_oc OLE control

Displaying the Insert
Object dialog box

Activating an object in
place

Activating the object
offsite

164

PFC providesfunctions and eventsthat offer basic control over an OLE control
based on u_oc. In addition to standard support for editable controls (such as
cut, copy, paste, and right-mouse button support), u_oc includes Paste Special
functionality, support for in-place and off-site activation, and update links
functionality.

For complete information on programming with the OLE control, see
Application Techniques.

You display the Insert Object dialog box to change the object or the server
application.

To display the Insert Object dialog box:
1 Create awindow that has an OLE control based on u_oc.
2 Cdl the pfc_InsertObject event:

ole 1.Event pfc_InsertObject ()

When you activate an object in place, the user interacts with the object inside
the PowerBuilder application’s window.

1 Create awindow that has an OLE control based on u_oc.
2 Cdl the pfc_EditObject event:
ole 1.Event pfc EditObject ()

When you activate an object offsite, the server application opensand the object
becomes an open document in the server’s window.

1 Create awindow that has an OLE control based on u_oc.
2 Cdl the pfc_OpenObject event:

ole 1.Event pfc OpenObject ()

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Updating the linked
object

When you update a linked object, PowerBuilder attemptsto find afile linked
to an OLE container. If the linked file is not found, a dialog displays and lets
the user bring up a second dialog for finding the file or changing the link.

1 Create awindow that has an OLE control based on u_oc.
2 Cdl the pfc_UpdatelLinks event:

ole 1.Event pfc UpdateLinks ()

Using the u_tab Tab control and the u_tabpg user object

About Tab controls
and tab pages

PFC Library User’s Guide

Many current applications use Tab controls and tab pages to enhance their user
interface. Theu_tab Tab control and the u_tabpg user object provide basic PFC
functionality. And they both implement the resi ze service, which you enable
differently depending on how the tab is defined.

Tab control A Tab control isa control that you place in awindow or user
object that contains tab pages. Part of the areain the Tab control isfor the tabs
associated with the tab pages. Any space left is occupied by the tab pages
themselves.

PFC providesthe u_tab Tab control, which you can use as an ancestor for Tab
controls.

Tab page A tab page contains other controls and is one of several pages
within aTab control. All tab pagesin a Tab control occupy the same area of the
control, and only oneisvisible at atime. The active tab page covers the other
tab pages. There are different ways to approach tab page definition. You can
define:

« Anembedded tab page Inthe Window or User Object painter, Select
Insert>TabPage from the Tab control’s pop-up menu and add controls to
those pages. An embedded tab pageis of class UserObject but is not
reusable.

» Atab page user object Inthe User Object painter, create a custom
visual user object and add the controlsthat will display on thetab page. To
add atab page user object toaTab control, Select | nsert>User Object from
the Tab control’s pop-up menu. A tab page defined as an independent user
object isreusable.

PFC providesthe u_tabpg custom visual user object, which you can use as
the ancestor for tab pages.

You can mix and match the two methods—one Tab control can contain both
embedded tab pages and tab page user objects. But non-PFC tab pages do not
have support for PFC features, such as resizing and the message router.

165

Using standard visual user objects

Using u_tab

Using u_tabpg

166

For more information on programming with Tab controls and tab pages, see
Application Techniques.

When using u_tab, you aways:

e Work with adescendant of u_tab

e Create the complete Tab control (including tab pages) in the User Object
painter

To create a Tab control:

1 Create auser object based on u_tab.

2 Add embedded tab pages and tab page user objects. For embedded tab
pages, you add controls as necessary. Tab page user objects must be
completely defined; you cannot add or modify controls from within the
Tab control.

Create, override, and extend tab-page events and functions as necessary.

4 Create, override, and extend tab-level events and functions as necessary.
Then call eventsin the tab pages, optionally defining user events on the
Tab control that call the tab page events.

5 Add the user object to awindow.

Whenusingu_tabpg, you alwayswork with adescendant of u_tabpg withinthe
User Object painter.

To create a tab page:
1 Create auser object based on u_tabpg.
2 Add controls as necessary.
3 Add PowerScript code for the controls as necessary.
4 Create, override, and extend tab page events and functions as necessary.
5 Add thetab page user object to one of the following:
e U_tab-based user object
e Standard visual user object of type Tab

e Tab control within the Window painter

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Using the resize You can use the resize service to add dynamic resize capabilities to tab pages.

service with u_tab

descendants How you enable the resize service differs depending on whether the Tab
control contains embedded tab pages or tab page user objects based on
u_tabpg. If aTab control contains both embedded tab pages and tab page user
objects, you can combine the first two procedures that follow.

When using the Create on Demand option for tab page user objects, you must
aso perform the third procedure to ensure that controls display properly.

v To enable the resize service for a Tab control when using embedded tab

pages:
1 Usethe User Object painter to create a Tab control based on u_tab.
2 Define embedded tab pages.
3 Enablethe resize service for the Tab control (this exampleisfrom the
Constructor event):
this.of SetResize (TRUE)
4 Register controls within the tab pages:
this.inv_resize.of Register &
(this.tabpage 1l.mle 1, &
this.inv_ resize.SCALETOBOTTOM)
this.inv_resize.of Register &
(this.tabpage 2.dw 1, &
this.inv_resize.SCALETOBOTTOM)
5 Add the user object to awindow.
6 Enabletheresize service for the window and register affected controls

PFC Library User’s Guide

(this example is from the window’s Constructor event):

this.of SetResize (TRUE)
this.inv _resize.of Register(tab_1, "Scale")
this.inv _resize.of Register &

(cb_cancel, &

this.inv_resize.FIXEDTOBOTTOM)

this.inv_resize.of Register &

(cb ok, this.inv_ resize.FIXEDTOBOTTOM)
this.inv_resize.of SetMinSize &

(this.width - 100, this.height - 100)

167

Using standard visual user objects

168

To enable the resize service for a Tab control when using tab page user
objects based on u_tabpg:

1
2

Use the User Object painter to create a tab page based on u_tabpg.

Enable the resize service for the tab page (this example is from the
Constructor event):

this.of SetResize (TRUE)
Register controls within the tab page:

this.inv _resize.of Register &
(this.dw 1, 0, 0, 100, 100))

Add the tab page user object to a Tab control.

If there are no embedded tab pages
If aTab control contains only tab page user objects based on u_tabpg (but

not embedded tab pages), you need not enable the resize service for the
Tab control.

If the Tab control isa user object, add it to awindow.

Enable the resize service for the window and register affected controls
(this example is from the Constructor event):

this.of SetResize (TRUE)
this.inv _resize.of Register &
(tab 1, 0, 0, 100, 100)
this.inv _resize.of Register &
(cb_cancel, &
this.inv_resize.FIXEDTOBOTTOM)
this.inv_resize.of Register &
(cb_ok, &
this.inv resize.FIXEDTOBOTTOM)
this.inv _resize.of SetMinSize &
(this.width - 100, this.height - 100)

To use the resize service with tab page user objects that have the Create
on Demand property:

1

In the User Object painter, display the Position tab of the object’s property
sheet to determine what the size will be at creation time.

Specify the original size by calling the of _SetOrigSize function (this
example is from the tab page's Constructor event):

this.inv resize.of SetOrigSize (1637, 457)

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

3 Register tab page controls:

this.inv_resize.of Register &
(this.dw 1, 0, 0, 100, 100))

4 Trigger the Resize event on the UserObject (this exampleis from the Tab
control’s Constructor event):

// The Resize event moves registered
// objects, as appropriate.
this.tabpage 1.TriggerEvent (Resize!)

Using custom visual user objects

PFC includes custom visual user objects that you can use to enhance
applications:

» Acalculator: u_calculator

« Acalendar: u_caendar

e Asplitbar: u_st splithar

» Anprogress bar: u_progresshar

Using the calculator control

You use u_calculator (the PFC calculator control) to provide any of the
following:

e Drop-down calculator for numeric columns in a Datawindow:

Edit:] 958 Salary [$42.100.00

First Name: [fhomas 1D & [ece|s|—
HIBE

5|5

2131+

Last Name: [Sisson

Start Date: [07/16/1991
Term Date: |UU?UUJUU
Birth Date: [10/2/63

=1 T S S

PFC Library User’s Guide 169

Using custom visual user objects

Using a drop-down
calculator with a
DataWindow control

170

e Drop-down calculator for numeric or decimal valuesin an EditMask:

o0 ~

» Standalone calculator for use with an EditMask:
C—

c|ce|:

7
4166
1
0

Users make cal culations using the drop-down calculator. To enter numbers
they either click the calculator’s buttons or use the numeric keypad with
NumLock turned on. The calculator automatically enters calculation results
into the associated field.

The PFC calculator control includes functionsthat allow you to control certain
aspects of calculator behavior. For example, you call the of _SetCloseOnClick
function to control whether the drop-down cal culator closes when the user
clicksthe equal sign.

The PFC calculator control works with DataWindow columns that have a
numeric or decimal data type and are registered with u_calculator.

Depending on the registration option, the cal culator displayswhen aregistered
column gets focus, when the user clicks the drop-down arrow, or when your
code calls the pfc_DDCalculator event.

Controlling the visual cue To control the visual cue that displaysin a
Datawindow column for which the drop-down calculator is enabled, you
supply an argument to the of Register function:

Argument Result
NONE If the column uses the:

» DropDownListBox edit style, the calculator displays
automatically when the column gets the focus

 Edit or EditMask edit style, the calculator displays
when you call the pf_DDCalculator event

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Displaying the
calculator
programmatically

PFC Library User’s Guide

Argument Result

DDLB Of_Register converts all registered columnsto the
DropDownListBox edit style. The calculator displays
when the user clicks the down arrow, which disappears
when the calculator displays

DDLB_WITHARROW | Of_Register converts al registered columnsto the
DropDownListBox edit style. The calculator displays
when the user clicks the down arrow, which remains
when the calculator displays

Column edit styles When the service converts columnsto the
DropDownListBox edit style, properties that do not apply to
DropDownListBoxesarelost. Because of this, youtypically usethedrop-down
calculator with columns that aready use the DropDownListBox edit style,
calling of _Register passing NONE.

To use adrop-down calculator with DataWindow columns:

1 Find out which numeric or decimal Datawindow columns are appropriate
for use with a drop-down calculator. For example, a salary column might
use a calculator for use when determining raises. These columns must use
the DropDownListBox, Edit, or EditMask edit style.

2 Place au_dw-based Datawindow control on the window or user object.

3 Enablethe drop-down calculator by calling the u_dw
of SetDropdownCal culator function (thisexampleisfrom aDatawindow
Constructor event):

this.of SetDropDownCalculator (TRUE)

4 Register columns one by one or all at once by calling the of _Register
function. Of _Register includes an optional argument specifying the
drop-down style:

this.iuo calculator.of Register("salary", &
this.iuo calculator.NONE)

5 Cadl additional functions as necessary to customize calculator behavior:

this.iuo calculator.of SetCloseOnClick (FALSE)
this.iuo _calculator.of SetInitialValue (TRUE)

You can also display the drop-down calculator programmatically. This works
with all of _Register options and is required for Edit and EditMask columns
when using the NONE option.

171

Using custom visual user objects

Using a drop-down
calculator with an
EditMask control

172

To display the drop-down calculator programmatically:

1
2

Place au_dw-based Datawindow control on the window or user object.

Enabl e the drop-down calculator by calling the u_dw
of _SetDropdownCalculator function (thisexampleisfrom aDatawindow
Constructor event):

this.of SetDropDownCalculator (TRUE)

Register columns to be displayed programmatically by calling the

of Register function. Of Register includes an argument specifying the
drop-down style. Programmatic display works best with the NONE style
but can be used with any drop-down style:

this.iuo calculator.of Register("salary", &
this.iuo calculator.NONE)

Define auser event or visual control (such as acommand button) that sets
focus in the Datawindow control and callsthe u_dw pfc_DDCal culator
event:

IF dw_1.SetColumn("salary") = 1 THEN
dw_1.Event pfc DDCalculator()
END IF

You can use a drop-down calculator with EditMask controls that use the
numeric or decimal option type.

To use a drop-down calculator with an EditMask control:

1
2

Place au_em-based EditMask control on the window or user object.

Enabl e the drop-down calculator by calling theu_em
of _SetDropdownCalculator function (this exampleis from an EditMask
Constructor event):

this.of SetDropDownCalculator (TRUE)
Call additional functions as necessary to customize calculator behavior:

this.iuo calculator.of SetCloseOnClick (FALSE)
this.iuo calculator.of SetInitialValue (TRUE)

Defineauser event or visua control (such asapicturebutton) that displays
the drop-down calculator by calling the u_em pfc_DDCalculator event:

em 1.Event pfc DDCalculator()

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Using a standalone You can create a standalone calculator by placing u_calculator directly ona
calculator window or user object.

v To create a standalone calculator:
1 Placeau_em-based EditMask control on the window or user object.
2 Placeaninstance of u_calculator on the window or user object.

3 Associate the drop-down calculator with the EditMask by calling the
u_calculator of SetRequestor function (this exampleisfrom a
u_calculator instance's Constructor event):

this.of SetRequestor (parent.em 1)

Setting calculator The PFC calculator control provides options that you can set to control
options calculator behavior:

» Closeon click Controlswhether the drop-down cal culator closes when
the user clicks the equal sign:

this.of SetDropDownCalculator (TRUE)

this.iuo calculator.of SetCloseOnClick (TRUE)

« Initial value Controlswhether the calculator initializes blank fieldswith
azero when it first displays:

this.of SetDropDownCalculator (TRUE)

this.iuo _calculator.of SetInitialValue (TRUE)

Use the Constructor event
You typically call the functions that control these behaviorsin theu_dw or

u_em Constructor event.

The examplesin this discussion are from the Constructor event of au_dw-
based DataWindow control.

PFC Library User’s Guide 173

Using custom visual user objects

Using the calendar control

Using a drop-down
calendar with a
DataWindow control

174

You use u_calendar (the PFC calendar control) to provide a drop-down
calendar for date values in any of the following:

e U_dw-based Datawindow control:

Start Date: [T716/31
|g July 1991 >
Su Mo Tu'wWe Th Fr Sa
BithDate:) 1 2 3 4 &5

8 9 10 11 12

15[16 17 18 19

22 23 24 25 26
23 30 A

Term Date:

e U_em-based EditMask control:

[nar10/97 f\.j
| Apil1997
Su Mo TuWwe Th Fr 5a
12 3 4
7 8 afin 1
14 15 16 17 18
21 22 2324 25
28 29 30

Users enter dates by clicking on the drop-down calendar, automatically
entering the selected date in the associated field. They change months by
clicking the >> and << buttons and can also navigate the calendar with
keyboard arrow keys.

By default, all days appear with the same characteristics. You can specify a
different color for Saturdays and Sundays as well as whether Saturdays and
Sundays should appear bold. The calendar also allows you to highlight
holidays and other marked days.

The PFC calendar control includes functions that allow you to control certain
aspects of calendar behavior. For example, you call the of _SetlInitial Value
function to control whether the drop-down calendar initializes blank fieldswith
the current date when it first displays.

The drop-down calendar works with Datawindow columns that have a date
data type and are registered with u_calendar.

Depending on the registration option, the calendar displays when aregistered
column gets focus, when the user clicks the drop-down arrow, or when your
code calls the pfc_DDCalendar event.

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide

Controlling the visual cue To control the visual cue that displaysin a
Datawindow column for which the drop-down calendar is enabled, you supply
an argument to the of Register function:

Argument Result

NONE If the column uses the:

» DropDownListBox edit style, the calendar displays
automatically when the column gets the focus

» Edit or EditMask edit style, the calendar displays
when you call the pf_DDCalendar event

DDLB Of_Register converts al registered columnsto the

DropDownListBox edit style. The calendar displays
when the user clicks the down arrow, which disappears
when the calendar displays

DDLB_WITHARROW | Of_Register converts al registered columnsto the

DropDownListBox edit style. The calendar displays
when the user clicks the down arrow, which remains
when the calendar displays

Column edit styles When the service converts columnsto the
DropDownListBox edit style, properties that do not apply to
DropDownListBoxes are lost. So you typically use the drop-down calendar
with columns that already use the DropDownListBox edit style, calling

of Register passing NONE.

To use adrop-down calendar with DatawWindow columns:

1

Find which date Datawindow columns are appropriate for use with a
drop-down calendar. For example, arequested delivery date column might
use a drop-down calendar. These columns must use the
DropDownListBox, Edit, or EditMask edit style.

Place au_dw-based DataWindow control on the window or user object.

Enable the drop-down calendar by calling the u_dw
of _SetDropdownCalendar function (this example is from a Datawindow
Constructor event):

this.of SetDropDownCalendar (TRUE)

Register columns one by one or all a once by calling the of Register
function. Of _Register includes an optional argument specifying the
drop-down style:

this.iuo_calendar.of Register("salary" &
this.iuo calendar.NONE)

175

Using custom visual user objects

5 (Optional) Establish the font style and color for weekend days:

this.iuo calendar.of SetSaturdayBold (TRUE)

this.iuo calendar.of SetSaturdayColor &
(RGB (0, 255, 0))

this.iuo calendar.of SetSundayBold (TRUE)

this.iuo calendar.of SetSundayColor &
(RGB(0, 255, 0))

6 (Optional) Establish alist of holidays with their font style and color (this
exampl e shows holidays for one year only):

Date 1d holidays[11]

1d holidays[1] = 1997-01-01
1d holidays[2] = 1997-02-17
1d holidays[3] = 1997-04-21
1d holidays[4] = 1997-05-26
1d_holidays[5] = 1997-07-04
1d_holidays[6] = 1997-09-01
1d_holidays[7] = 1997-10-13
1d holidays[8] = 1997-11-27
1d holidays[9] = 1997-11-28
1d holidays[10] 1997-12-25
1d holidays[11] 1997-12-26

this.iuo calendar.of SetHoliday(ld holidays)

this.iuo calendar.of SetHolidayBold (TRUE)

this.iuo calendar.of SetHolidayColor &
(RGB(0, 255, 0))

7 (Optional) Establish alist of marked days with their font style and color:

Date 1d holidays([11], 1d marked days[12]

1d marked days[1l] = 1996-06-13
1d marked days[2] = 1996-03-16
1d marked days[3] = 1996-09-23
1d marked days[4] = 1996-09-14
1d marked days[5] = 1997-06-13
1d marked days[6] = 1997-03-16

176

1d marked days[7] = 1997-09-23
1d marked days[8] = 1997-09-14
1d marked days[9] = 1998-06-13
1d marked days[10] = 1998-03-16
1d marked days[11] = 1998-09-23
1d marked days[12] = 1998-09-14

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Displaying the
calendar
programmatically

Using a drop-down
calendar with an
EditMask control

PFC Library User’s Guide

this.iuo calendar.of SetMarkedDay (1ld marked days)
this.iuo calendar.of SetMarkedDayBold (TRUE)
this.iuo_calendar.of_ SetMarkedDayColor &

(RGB (255, 0, 0))

Ensuring consistency
To ensure that all users see the same calendar display, define display

characteristics, holidays, and marked daysin the u_calendar (extension-
level object) Constructor event.

(Optional) Call additional functions as necessary to customize calendar
behavior:

this.iuo calendar.of SetAlwaysRedraw (TRUE)
this.iuo calendar.of SetInitialValue (TRUE)

You can aso display the drop-down calendar programmatically. Thisworks
with all of _SetRegister options and isrequired for Edit and EditMask columns
when using the NONE option.

To display the drop-down calendar programmatically:

1
2

Place au_dw-based DataWindow control on the window or user object.

Enable the drop-down calendar by calling the u_dw
of _SetDropdownCalendar function (this example is from a Datawindow
Constructor event):

this.of SetDropDownCalendar (TRUE)

Register columns to be displayed programmatically by calling the

of Register function. Of _Register includes an argument specifying the
drop-down style. Programmatic display works best with the NONE style
but can be used with any drop-down style:

this.iuo_calendar.of Register("start_ date" &
this.iuo calendar.NONE)

Define auser event or visual control (such asacommand button) that sets
focus in the DataWindow control and calls the u_dw pfc_DDCalendar
event:

IF dw_1.SetColumn("start date") = 1 THEN
dw _1.Event pfc DDCalendar ()
END IF

You can use a drop-down calculator with EditMask controls that use the date
option type.

177

Using custom visual user objects

178

v To use adrop-down calendar with an EditMask control:

1
2

5

Place au_em-based EditMask control on the window or user object.

Enable the drop-down calendar by calling the u_em
of _SetDropdownCalendar function (this example is from an EditMask
Constructor event):

this.of SetDropDownCalendar (TRUE)
(Optional) Establish the font style and color for weekend days:

this.iuo calendar.of SetSaturdayBold (TRUE)
this.iuo calendar.of SetSaturdayColor &
(RGB(0, 255, 0))
this.iuo calendar.of SetSundayBold (TRUE)
this.iuo calendar.of_ SetSundayColor &
(RGB (0, 255, 0))

(Optional) Establish alist of holidays with their font style and color (this
exampl e shows holidays for one year only):

Date 1d holidays[11]

1d_holidays[1] = 1997-01-01
1d_holidays[2] = 1997-02-17
1d_holidays[3] = 1997-04-21
1d holidays[4] = 1997-05-26
1d holidays[5] = 1997-07-04
1d holidays[6] = 1997-09-01
1d_holidays[7] = 1997-10-13
1d_holidays[8] = 1997-11-27
1d_holidays[9] = 1997-11-28
1d holidays[10] = 1997-12-25
1d holidays[11] = 1997-12-26

this.iuo calendar.of SetHoliday(ld holidays)

this.iuo calendar.of SetHolidayBold (TRUE)

this.iuo calendar.of SetHolidayColor &
(RGB(0, 255, 0))

(Optional) Establish alist of marked days with their font style and color:
Date 1d holidays[11], 1d marked days[12]
1d marked days[1l] = 1996-06-13
1d marked days([2] = 1996-03-16
1d marked days[3] = 1996-09-23

1d marked days[4] = 1996-09-14
1d marked days[5] = 1997-06-13

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Establishing weekend
display options

PFC Library User’s Guide

1d marked days[6] 1997-03-16
1d marked days[7] 1997-09-23
1d marked days[8] = 1997-09-14

1d marked days[9] = 1998-06-13

1d marked days[10] = 1998-03-16
1d marked days[11] = 1998-09-23
1d marked days[12] = 1998-09-14

this.iuo_calendar.of SetMarkedDay (1ld marked days)
this.iuo calendar.of SetMarkedDayBold (TRUE)
this.iuo_calendar.of_ SetMarkedDayColor &

(RGB (255, 0, 0))

(Optional) Call additional functions as necessary to customize calendar
behavior:

this.iuo calendar.of SetAlwaysRedraw (TRUE)
this.iuo calendar.of SetInitialValue (TRUE)

Defineauser event or visual control (such asapicture button) that displays
the drop-down calendar by calling the u_em pfc_DDCalendar event:

em 1.Event pfc DDCalendar()

The PFC calendar control allows you to specify distinct colors and/or bold for
Saturdays and Sundays.

To establish weekend display options:

1 Specify whether Saturdays appear in bold by calling the

of _SetSaturdayBold function:
this.iuo calendar.of SetSaturdayBold (TRUE)
Specify acolor for Saturdays by calling the of _SetSaturdayColor function:

this.iuo_calendar.of_ SetSaturdayColor &
(RGB(0, 255, 0))

Specify whether Sundays appear in bold by calling the of _SetSundayBold
function:

this.iuo calendar.of SetSundayBold (TRUE)
Specify a color for Sundays by calling the of SetSundayColor function:

this.iuo calendar.of SetSundayColor &
(RGB(0, 255, 0))

179

Using custom visual user objects

Establishing holidays

and marked days marked days.

The PFC calendar control allows you to establish a set of holidays and a set of

You can specify distinct colors and/or bold for holidays and marked days.

Specify dates for more than one year
Users can navigate through multiple years in the PFC calendar control. You

should specify holidays and marked days to handle as many years as needed.

v To establish holidays and marked days:

1 Establish arrays containing the lists of holidays and marked days:

Date 1d holidays([11],

1d holidays[1] =
1d_holidays[2] =
1d_holidays[3] =
1d_holidays[4] =
1d holidays[5] =
1d holidays (6] =
1d holidays[7] =
1d_holidays[8] =

1d marked days([12]

1d _holidays[9] = 1997-11-28

1d_holidays[10]
1d holidays[11]

1d marked days|[1]
1d marked days[2]
1d marked days[3]
1d marked days[4]
1d marked days (5]
1d marked days|[6]
1d marked days|[7]
1d marked days|[8]
1d marked days[9]

1d marked days[10]

1d marked days([11l] =

1d marked days([12] =

1997-01-01
1997-02-17
1997-04-21
1997-05-26
1997-07-04
1997-09-01
1997-10-13
1997-11-27
1997-12-25
1997-12-26
= 1996-06-13
= 1996-03-16
= 1996-09-23
= 1996-09-14
= 1997-06-13
= 1997-03-16
= 1997-09-23
= 1997-09-14
= 1998-06-13
= 1998-03-16
1998-09-23
= 1998-09-14

2 After enabling the calendar for the Datawindow or EditMask control,
establish the list of holidays by calling the of _SetHoliday function:

this.iuo calendar.of_ SetHoliday(ld holidays)

3 Establish holiday display options as necessary:

this.iuo calendar.of SetHolidayBold (TRUE)

180

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

this.iuo calendar.of SetHolidayColor &
(RGB(0, 255, 0))

4 Establish thelist of marked days by calling the of SetMarkedDay
function:
this.iuo_calendar.of SetMarkedDay (1d marked days)
5 Establish marked day options as necessary:
this.iuo calendar.of SetMarkedDayBold (TRUE)
this.iuo_calendar.of_ SetMarkedDayColor &
(RGB (255, 0, 0))
Setting calendar The PFC calendar control provides optionsthat you can set to control calendar
options behavior:

PFC Library User’s Guide

Close on click Controls whether the drop-down calendar closes when
the user clicks adate:

this.of SetDropDownCalendar (TRUE)

this.iuo calendar.of SetCloseOnDClick (TRUE)

Close on double-click Controlswhether the drop-down calendar closes
when the user double-clicks a date:

this.of SetDropDownCalendar (TRUE)

this.iuo calendar.of SetCloseOnDClick (TRUE)
Date format Controlsthe format of the date returned by the calendar:

this.of SetDropDownCalendar (TRUE)

this.iuo calendar.of SetDateFormat ("mm/dd/yy")

This must match the control’s date format
The of _SetDateFormat specification must match the DataWindow

column’s edit format or the EditMask’s date mask.

Initialize date Controlswhether the calendar initializes blank fieldswith
the current date when the calendar displays:

this.of SetDropDownCalendar (TRUE)

this.iuo calendar.of SetInitialValue (TRUE)

181

Using custom visual user objects

Use the Constructor event
You typically call the functions that control these behaviorsin the u_dw or

u_em Constructor event.

Using the splitbar control

Using the splitbar to
separate controls

182

You useu_st_splitbar (the PFC splitbar control) to display a splitbar in
windows and visual user objects. The splitbar separates two or more visual
controls. By dragging the splitbar users can resize the surrounding controls
dynamically.

The splitbar control allows you to give windows a customizable interface, one
of the fundamentals of good interface design. By dynamically resizing visua
controls, users can easily control the information displayed. Typical usesfor
splitbars include;

 BetweenaTreeView and aListView
+ Between aTreeView and a DatawWindow
* Between master and detail Datawindows

To use the splitbar control:

1 Placeaninstanceof u_st_splitbar on awindow between two or more
controls.

2 Moveand resize the splitbar object and the surrounding objects until they
relate appropriately. For example, avertical splitbar between two objects
should have the same height as the surrounding objects.

Setting the exact dimensions
Control the exact size and placement with the splitbar object’s property

sheet.

3 Addcodetotheu_st_splitbar instance’s Constructor event to establish the
line style and register the controls that resize when the user moves the
splitbar:

this.of Register(tv_1, LEFT
this.of Register(lv_1, RIGHT)
this.of SetBarColor (RGB(192, 192, 192))

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

Setting splitbar
options

The PFC splitbar control provides options that you can set to control splitbar
display. You can control:

Bar color To specify bar color, call the of SetBarColor function:
this.of SetBarColor (RGB(192,192,192))

The bar color that displays when the bar is moved To specify bar
move color, call the of_SetBarMoveColor function:

this.of SetBarMoveColor (RGB (128, 128, 128))

Horizontal pointer To specify the name of the pointer that displays
when the cursor is over a horizontal splitbar, call the
of SetHorizontal Pointer function:

this.of SetHorizontalPointer ("SizeNS!")

Vertical pointer To specify the name of the pointer that displays when
the cursor is over avertical splitbar, call the of _SetVertical Pointer
function:

this.of SetVerticalPointer ("SizeNS!")

Minimum object size To specify the minimum size for objects resized
by the splitbar, call the of _SetMinObjectSize function:

this.of SetMinObjectSize (100)

You set these options in the u_st_splitbar instance's Constructor event.

Using the progress bar control

You use u_progresshar (the PFC progress bar control) to provide users with a
visual representation of percentage complete for long-running operations. The
PFC progress bar can be vertical or horizontal and can display either percent
complete or programmatically specified text.

PFC Library User’s Guide

You can display the progress bar control to show percent complete for any
repetitive process. Typical uses for aprogress bar include:

Application setup
Dataretrieval

File copy operations

PFC provides similar progress-bar capabilities on an MDI frame with
MicroHelp as part of n_cst_winsrv_statusbar (the window status-bar service).

183

Using custom visual user objects

How PFC calculates
percent complete

Using the progress
bar in a window

184

Other PFC progress bar controls
PFC also provides horizontal (u_hpb) and vertical (u_vpb) progress bars that

are based on the standard PowerBuilder progress bar controls. The
u_progressbar control has functionality that is not available with the standard
contrals.

You cal the of _SetMaximum function to specify the value that must be
reached to equal 100%—for example, the number of rowsto beretrieved from
the database. Then your code updates the current progress by calling the

of _Increment function regularly—for example, once for every ten rows.
Percent completeis equal to (current progress/ maximum) * 100—for
example, (number of rows retrieved / maximum number of rows) * 100.

Showing progress for retrieval
To show progress for row retrieval, code an embedded SQL statement

(SELECT MAX) to determine the number of rowsto be retrieved. Then
increment progress in the DataWindow's RetrieveRow event. (Repeated
execution of the RetrieveRow event causes poor performance; but some users
prefer visual feedback to optimized performance.)

You can either place the progress object directly onto awindow or create a
pop-up window that displays the progress bar, perhaps including a Cancel
button.

To use the progress bar in awindow or user object:

1 Placeaninstance of u_progressbar on the window or user object,
optionally making it hidden.

2 Add code to the progressbar control to establish default behavior (this
exampl e uses the control’s Constructor event):

this.of SetFillStyle (LEFTRIGHT)
this.of SetDisplayStyle (PCTCOMPLETE)
this.of SetFillColor (RGB (128, 128, 128))

3 Establish the value that must be reached to equal 100%, such as the
number of rows displayed in a DataWindow or the number of bytesin the
file to be copied (this example sets the maximum as the number of
elementsin the array containing DataWindow objects to be printed):

DataStore lds_data
Long 11 return
Integer 1li count, 1li max

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

String ls dataobject[] = &
{"d_empall", "d_empbydept", "d_dept"}

lds_data = CREATE DataStore
1i max = UpperBound(ls dataobject)
uo_progress.of SetMaximum(li max)

4 Before entering the process to be tracked, initialize the progress bar by
calling the of _SetPosition function passing zero:

uo_progress.of SetPosition(0)

5 Atvarious pointsinyour process (or at regular pointsin repetitive logic),
call the of_Increment function to update the progress bar:

FOR 1i count = 1 TO 1li max
lds_data.DataObject = 1ls dataobject[li count]
lds data.SetTransObject (SQLCA)
11 return = lds data.Retrieve()
IF 11 return <> -1 THEN
uo_progress.of Increment (1)
lds_data.Print ()

END IF
NEXT
DESTROY lds_data
Using the progress N_cst_winsrv_statusbar (the PFC status bar object) includes much of the
bar in the status bar functionality provided by u_progressbar. This allows you to display progress

in the status bar instead of using space in the window or opening a separate
progress window.

Status bar service functions that apply to the progress bar are equivalent to
progress bar control functions except that the function namesinclude theword
bar. For example, of SetBarAutoReset is equivalent to of SetAutoReset.

v To use the progress bar in the status bar:
1 Ensurethat the status bar service is enabled for the frame.

2 Enablethe progress bar by calling the n_cst_ winsrv_statusbar of _SetBar
function:

this.inv_statusbar.of SetBar (TRUE)
3 Add code to establish default behavior for the progress bar:

this.inv_statusbar.of SetBarDisplayStyle &
(this.inv_statusbar.PCTCOMPLETE)

PFC Library User’s Guide 185

Using custom visual user objects

4 Establish the value that must be reached to equal 100%, such as the
number of rows displayed in a DataWindow or the number of bytesin the
file to be copied. This example sets the maximum as the number of
elementsin the array containing DataWindow objects to be printed:

DataStore 1lds_data
Long 11 return
Integer 1li count, 1li max
String ls _dataobject[] = &
{"d empall", "d empbydept", "d dept"}

lds_data = CREATE DataStore
1i max = UpperBound(ls dataobject)
this.inv_statusbar.of SetBarMaximum(li_ max)

5 Before entering the process to be tracked, initialize the progress bar by
calling the of _SetBarPosition function, passing zero:

w_frame 1w frame

lw _frame = gnv_app.of GetFrame ()
lw_frame.inv_ statusbar.of SetBarPosition(0)

6 At various pointsinyour process (or at regular pointsin repetitive logic),
call the of_Barlncrement function to update the progress bar:

FOR 1i count = 1 TO 1li max
lds_data.DataObject = 1ls dataobject[li count]
lds data.SetTransObject (SQLCA)
11 return = lds_data.Retrieve()
IF 11 return <> -1 THEN
lw_frame.inv statusbar.of BarIncrement (1)
lds_data.Print ()
END IF
NEXT

Progress bar options The PFC progress bar control provides options that you can set to control
progress bar behavior. With the exception of of Maximum and of _Minimum,
you typically call these functionsinthe Constructor event of theu_progressbar
instance (u_progresshar) or the pfc_PreOpen event of the Frame window
(n_cst_winsrv_statusbar).

Progress bar options include;

« Maximum and minimum values Control the values that determine 0%
and 100%. You call different functions, depending on whether the progress
bar isin awindow or in the status bar:

186 PowerBuilder

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide

» U_progressbar Call theof SetMaximum and of _SetMinimum

functions:

SELECT COUNT (emp_1id)
INTO :il max
FROM Employee
USING SQLCA;
IF il max > 0 THEN
uo_progress.of_ SetMaximum (il max)
uo_progress.of SetMinimum(0)
END IF

* N_cst_winsrv_statusbar Call the of _SetBarMaximum and

of SetBarMinimum functions:

w_frame lw_frame

lw_frame = gnv_app.of GetFrame ()
SELECT COUNT (emp_1id)
INTO :il max
FROM Employee
USING SQLCA;
IF il max > 0 THEN
lw_frame.inv statusbar.of SetBarMaximum &

(i1l max)
lw_frame.inv_statusbar.of_ SetBarMinimum(0)
END IF

Display style Controlsthe text that displaysin the progress bar:
¢ Notext (bar only)

e Percent complete

e Current increment value

e User-specified text

You call different functions depending on whether the progressbar isin a
window or in the status bar:

e U_progressbar Call the of SetDisplayStyle function, passing
either an integer or au_progressbar constant to specify the
information displayed on the progress bar:

this.of SetDisplayStyle (PCTCOMPLETE)

187

Using custom visual user objects

188

« N_cst winsrv_statusbar Call theof SetBarDisplayStylefunction,
passing either an integer or an n_cst_winsrv_statusbar constant to
specify the information displayed on the progress bar:

this.inv statusbar.of SetBarDisplayStyle &
(this.inv_statusbar.PCTCOMPLETE)

Fill style Controlswhether the progress bar fills from left to right, right
to left, bottom to top, or top to bottom. You call different functions
depending on whether the progress bar isin awindow or in the status bar:

« U _progressbhar Call theof SetFillStyle function, passing either an
integer or au_progresshar constant to specify the progress bar fill
style:

this.of SetFillStyle (LEFTRIGHT)

« N_cst_winsrv_statusbar Call the of _SetBarFill Style function,
passing either an integer or an n_cst_winsrv_statusbar constant to
specify the progress bar fill style:

this.inv_statusbar.of_ SetBarFillStyle &
(this.inv_statusbar.LEFTRIGHT)

Fill color Controlsthe color displayed as the progress bar fills. You call
different functions depending on whether the progress bar isin awindow
or in the status bar:

e U_progressbar Call the of_SetColor function, passing the color
used to fill the bar:

this.of SetFillColor (RGB (128, 128, 128))

* N_cst_winsrv_statusbar Call the of SetBarColor function,
passing the color used to fill the bar:

this.inv_statusbar.of_ SetBarFillColor &
(RGB (255, 0, 0))

Background color Controlsthe color displayed before the progress bar
fills:

» Cadll the of_SetBackColor function, passing the background color:

this.of SetBackColor (RGB (128, 128, 128))

Not used in the status bar
This option is not available when using a progress bar with the status bar

service.

PowerBuilder

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide

Text color Controlsthe color of text displayed in the progress bar. You
call different functions depending on whether the progress bar isin a
window or in the status bar:

e U_progressbar Call the of SetTextColor function, passing the
color used for text:

this.of SetTextColor (RGB(255, 0, 0))

* N_cst_winsrv_statusbar Call the of _SetBarTextColor function,
passing the color used for text:

this.inv_statusbar.of SetBarTextColor &
(RGB (255, 0, 0))

Autoreset Controls whether a completed progress bar remains filled
when it reaches 100%. You call different functions depending on whether
the progress bar isin awindow or in the status bar:

« U_progressbhar Call the of SetAutoReset function:
this.of SetAutoReset (TRUE)

* n_cst_winsrv_statusbar Call the of SetBarAutoClear function;
this.inv_statusbar.of SetBarAutoReset (TRUE)

Default step value Controlsthe default increment value. Thisisthe
value used when you call of _Increment (or of _Barlncrement) with no
arguments. Theinitial default step valueis 10. You call different functions
depending on whether the progress bar isin awindow or in the status bar:

» U _progressbar Call the of SetStep function, specifying the
increment value to be used when calling of _Increment with no
arguments:

this.of SetStep(5)

* N_cst_winsrv_statusbar Call the of SetBarStep function,
specifying the increment value to be used when calling
of Barlncrement with no arguments:;

this.inv_statusbar.of SetBarStep(5)

Font options Controlsthe font and other display characteristics for the
progress bar text. You can call one or more of the following functions:

this.of SetFontBold (TRUE)

this.of SetFontFace ("Monotype Corsiva")
this.of SetFontFamily (Script!)

this.of SetFontCharSet (1)

this.of SetFontItalic (TRUE)

189

Using custom visual user objects

this.of SetFontSize(10)
this.of SetFontPitch(Variable!)
this.of SetFontUnderline (TRUE)

Not used in the status bar
Font options are not available when using a progress bar with the status bar

service.

v To specify user-defined text displayed in the progress bar:

1

190

Call theof_SetMessageText function, specifying thetext stringsto display
at regular intervalsin the progress bar:

String 1ls msgtext[] = {"Ten", "Twenty", &
"Thirty", "Forty", "Fifty", "Sixty", &
"Seventy", "Eighty", "Ninety", &

"One Hundred"}
this.of SetMessageText (1s_msgtext)

Call theof SetDisplayStyle function, passing either a3 or the MSGTEXT
constant:

this.of SetDisplayStyle (MSGTEXT)

The progress bar displays the text strings at regular intervals as the bar
fills.

Not used in the status bar
This option is not available when using a progress bar with the status bar

service.

PowerBuilder

CHAPTER 6 Using PFC Windows and Menus

About this chapter This chapter explains how to use PFC windows and menus.

Contents Topic Page
Using PFC windows 191
Using menus with PFC 201

Using PFC windows

PFC provides a base class ancestor window (w_master) as well as
ancestor windows for each of the standard window types.

Each of these windows descends from w_master:

pfc_w_master

w_master
\ \ \ \
pfc_w_main pfc_w_frame pfc_w_sheet | ||pfc_w_response
w_main w_frame w_sheet W_response
pfc_w_child pfc_w_popup
w_child W_popup

PFC windows contain instance variables, events, and functions that
provide advanced functionality and enable communication with other
PFC objects.

PFC Library User’s Guide 191

Using PFC windows

Window usage basics

Developing with PFC
windows

Enabling window
services

192

When developing an application, you typicaly:
» Create base-class and descendent windows
* Enablewindow services

e Open windows from menu items

As you begin an application, you review the required functionality to decide
which instance variables, events, and functions belong in ancestor windows.
The way you define application-specific ancestor behavior differs depending
on your extension strategy.

For adiscussion of extension strategy, see “ Choosing an extension strategy”
on page 20.

PFC provides avariety of window servicesthat you can use to add production-
strength features to an application. Many of these services require little or no
coding on your part. The window services are:

* Basewindow service

» Preference service

e Status bar service (frame windows only)

e Sheet management service (frame windows only)

» Resize service (also applies to tabs, tab pages, and custom visual user
objects)

To use window services:

1 Determine which window services are appropriate for the window.

2 Enable the appropriate window services using the of Setservicename
functions (thisexample from thewindow’spfc_PreOpen event enablesthe
preference and resize services):

this.of SetPreference (TRUE)
this.of SetResize (TRUE)

3 Cdl other functions as necessary to initialize services (this example
enablesthe preference servicefor menu itemsand toolbars and enablesthe
resize service for a Datawindow and two CommandButtons):

this.inv preference.of SetMenuItems (TRUE)

this.inv preference.of SetToolbars (TRUE)

this.inv _resize.of Register &
(dw_emplist, 0, 0, 100, 100)

PowerBuilder

CHAPTER 6 Using PFC Windows and Menus

this.inv_resize.of Register &
(cb_ok, 0, 100, 0, 0)

this.inv_resize.of Register &
(cb_cancel, 0, 100, 0, 0)

For specific usage information on individual window services, see “Window
services’ on page 89.

Opening PFC In many applications, users open windows by selecting menu items. You can
windows use the PFC message router to help implement this processin a flexible and
consistent manner.

See “The message router” on page 41.

v To open PFC windows from a menu item:

1 Inthe menu item, populate Message.StringParm with the window name
and call the menu service of _SendMessage function:

n_cst_menu 1lnv_menu
Message.StringParm = "w_emplist"
Inv_menu.of SendMessage(this, "pfc Open")

2 Intheframe window’s pfc_Open event, add code to access the message
object and open the requested window:

String 1s_window
w_sheet 1lw_sheet

1ls_window = Message.StringParm
OpenSheet (1lw_sheet, 1ls window, this, 4, Original!)

Other options
There are other ways to open PFC windows. These include opening windows

directly from the menu item, extending the message object to contain passed
arguments, and defining additional frame window user events for opening
windows.

PFC Library User’s Guide 193

Using PFC windows

Using response windows

You typically usew_response (the PFC response window) to create aresponse
window that displays and collects data, settings, or preferences.

Another use for w_response

You can also use w_response to create a response window used in place of a
MessageBox. But inthat caseit’susually best to usethew_message dial og box

(part of the error message service).

W_response includes three user events to which you add code that processes

the user action:

Event Useitto

More information

pfc_Apply Process the window
contents, leaving the
window open

Many current applications contain
an Apply CommandButton that
performs this functionality

pfc_Cancel Ignore the window
contents and close the
window

You cal this event from the
CommandButton to which you
assign the Cancel property

pfc_Default | Processthe window
contents and close the
window

\" To use w_response events:

You cal this event from the
CommandButton to which you
assign the Default property

1 Create awindow that descends from w_response.

2 Add controls to handle display and user input.

Use the PFC standard visual user objects
You can use PowerBuilder window controls with PFC. But it's best to use

controls that descend from PFC standard visual user objects (u_dw, u_Ib,

u_sle, u_ch, and so on).

3 Add code to support these controls. For example, add code to the
window’s pfc_PreOpen event to access valuesin an INI filefor display in

SingleLineEdit controls.

194

PowerBuilder

CHAPTER 6 Using PFC Windows and Menus

4 Codethepfc_Apply, pfc_Cancel, and pfc_Default eventsasnecessary. For
example, apfc_Default event might save the window contentsin an INI
file and close the window:

String 1s _temp

ls temp = trim(sle base.Text)

SetProfileString("eisapp.ini", &
"Files", "base", 1ls_temp)

ls temp = trim(sle x1.Text)

SetProfileString("eisapp.ini", &
"Files", "extral", ls temp)

ls temp = trim(sle x2.Text)

SetProfileString("eisapp.ini", &
"Files", "extra2", ls temp)

Close (this)

5 Add CommandButtons to trigger the corresponding event. For example,
an OK CommandButton should call the pfc_Default event:

parent.Event pfc Default ()

Using pfc_Apply
To maximize reusability, place processing in pfc_Apply and call
pfc_Apply from pfc_Default.

Using the pfc_Save process

Thew_master pfc_Save event automatically validates and saves changes for
al PFC and non-PFC Datawindows on a window. Because pfc_Save calls
many other events, offloading most of the work to the logical unit of work
service, you should think of it as a process rather than a single event.

The logical unit of work service) . .
The pfc_Save process uses the logical unit of work service, which you enable

by calling the of _Setl ogical UnitOfWork function. If you do not enable the
logical unit of work service, w_master enables it automatically as needed.

PFC Library User’s Guide 195

Using PFC windows

196

Although there are many ways to save data, it’s best to use the pfc_Save event
to save changes. In addition to simply calling thew_master pfc_Save event and
checking the return value, you can have complete control over update
processing by customizing and extending events called by the pfc_Save
process. You can:

e Savechangesfor other self-updating objects (including the n_ds
DataStore, the u_tvs TreeView, and the u_Ivs Listview)

e Savechangesfor other controls
e Control which objects are updated and the order in which they are updated

e Savechangesfor objects on other windows

Self-updating objects

PFC integrates update functionality into certain objects called self-updating
objects. When you call thew_master pfc_Save event, it automatically updates
all self-updating objects on the window. All DataWindows are self-updating.
You must explicitly enable self-updating functionality for n_ds, u_lvs, u_tab,
and u_tvs. And you can add self-updating functionality to any visual or
nonvisual control.

For more on self-updating objects, see“Logical unit of work service’ on page
111.

PowerBuilder

CHAPTER 6 Using PFC Windows and Menus

The pfc_Save process Thisisthe w_master pfc_Save process:

of_UpdateChecks:
pfc_AcceptText
pfc_UpdatesPending
pfc_Validation

I

pfc_UpdatePrep

]

pfc_PreUpdate

]

pfc_BeginTran

]

pfc_Update

I

pfc_EndTran

I

pfc_DBError

]

pfc_PostUpdate

Pfc_Save events These are the eventsin the pfc_Save process:

Event

Purpose

Comment

pfc_AcceptText

Performs an AcceptText
function for all self-
updating objects on the
window

Called by thew_master
of _AcceptText function

pfc_UpdatesPending

PFC Library User’s Guide

Determines which self-
updating object have
pending updates

Called by thew_master
of _UpdatesPending function

197

Using PFC windows

198

Event

Purpose

Comment

pfc_Vaidation

Performsvalidation on all
self-updating objectswith
pending updates

Called by the of_Validation
function

For non-PFC Datawindows,
codeaue_validation user event
that returns an integer or long
greater than or equal to O to
indicate success

pfc_UpdatePrep

Empty user event towhich
you add optional update
preparation logic

Extend this event if the
window itself functionsas a
self-updating object

pfc_PreUpdate

Empty event inwhich you
can code additional
validation

Return 1 for success; return
anything else to terminate the
pfc_Save process

pfc_BeginTran Empty eventinwhichyou | Return 1 for success; return
code logic to begin the anything else to terminate the
database transaction, if pfc_Save process
required by your DBMS
pfc_Update Performs database You can extend this event to
updates for all modified update controls that are not
self-updating object self-updating. Return 1 for
success; return -1 for failure. If
you return -1, also create an
error message by calling the
of_SetDBErrorMsg function.
The pfc_DBError event will
display this message
pfc_EndTran Empty event towhichyou | Commit or roll back changes
code logic to commit or based on the passed argument

roll back the database
transaction

Although you can code
COMMIT and ROLLBACK
statements in other places, it's
best to code them here

PowerBuilder

CHAPTER 6 Using PFC Windows and Menus

Event Purpose Comment

pfc_DBError If any update failed, this | If the Error serviceis enabled,
event displaysamessage | thisevent callstheof _Message
function; if not, it callsthe
PowerScript M essageBox
function

PFC delays displaying the
error message (as opposed to
displayingitinpfc_Update) so
that you can roll back changes
in the pfc_EndTran event

before displaying an error
message dial og box
pfc_PostUpdate Resetstheupdateflagsfor | If you extended the pfc_Save
all updated objects, as process to update other
follows controls, extend this event to

reset the update flags

Pfc_Save return Pfc_Save returns values as follows:
values
Return
value Meaning Comment
1 Success
0 No pending updates
-1 AcceptText error pfc_Save process halted
-2 Error in pfc_UpdatesPending | pfc_Save process halted
-3 Validation error pfc_Save process halted
-4 Error in pfc_PreUpdate pfc_Save process halted
-5 Error in pfc_BeginTran pfc_Save process halted
-6 Error in pfc_Update pfc_EndTran and pfc_DBError events
completed; pfc_PostUpdate was not
performed
-7 Error in pfc_EndTran pfc_PostUpdate was not performed
-8 Error in pfc_PostUpdate
-9 Error in pfc_UpdatePrep pfc_Save process halted

Adding code to extend You can customize and extend the pfc_Save process. For example, you can:
pfc_Save events
e Add code to the pfc_EndTran event to commit and roll back transactions

¢ Createand code aue Validation user event in non-PFC DataWindows to
perform validation

« Extend the pfc_Save process to include other types of window controls

PFC Library User’s Guide 199

Using PFC windows

Vv

Enabling self-updating
objects

200

To add code to the pfc_EndTran event:

* Add codeto the pfc_EndTran event that checksthe ai_update results
argument and commits or rolls back changes as appropriate for each
transaction object that might be updated:

Integer 1li return

IF al update results = 1 THEN

1i return = SQLCA.of Commit ()
ELSE

1i return = SQLCA.of Rollback()
END IF

IF 1i return = 0 THEN
Return 1

ELSE
Return -1

END IF

By default, Datawindows are the only self-updating objectsthat are updatable.
All others(n_ds, u_lvs, u_tvs, u_tab, and any user-defined custom visual user
objects) are nonupdatable and must be specifically enabled.

To enable self-updating objects:
1 Cadll the self-updating object’s of _SetUpdatable function:

ids _data.of SetUpdateable (TRUE)
lv_1.of SetUpdateable (TRUE)
tv_1.of SetUpdateable) (TRUE)

2 (DataStoresonly) Add the n_ds-based DataStore to the list of controlsto
be updated:

PowerObject 1lpo objs|[]
Integer 1i count

// this = window

lpo objs = this.control

1i count = UpperBound (lpo objs)
lpo objs[li count + 1] = ids data
this.of SetUpdateObjects (lpo_objs)

PowerBuilder

CHAPTER 6 Using PFC Windows and Menus

Engbling a one-time PFC alows you to identify a specified group of controls and update them.
update

v To perform a one-time update:
1 Identify the controls to be updated:

PowerObject lpo objs|[]
Integer 1li return

lpo objs[1] = 1v_1
lpo objs[2] = dw_1
1lv_1.of SetUpdateable (TRUE)

2 Perform the one-time save by calling the pfc_SaveObjects event:

// this = window
1i return = this.Event pfc_ SaveObjects (lpo_objs)
// Check for return codes 1 to -8

Using menus with PFC

PFC implements menu services through functions, menu items, and events
coded in m_master. M_master contains:

e A function that calls the message router

¢ Menuitemsthat use the message router to perform the requested
functionality

Inherit from menus in the extension level
When using menus, always inherit from menus with them_ prefix (don’t

inherit from menus with the pfc_ prefix). Pfc_ prefixed objects are subject to
change when you upgrade PFC versions.

PFC Library User’s Guide 201

Using menus with PFC

Two menu inheritance strategies
You can use PFC’s menus or write your own.

Using PFC menus Your application can use PFC menus as the basis for its menus. In most cases,
you use m_master asthe ancestor for your application’s sheet windows and use
m_frame as the frame menu. You add all application-specific menu bar items
and menu itemsto m_master. L et sheet menusinherit from m_master, and
enable and disable menu items as appropriate. Disable menu bar items and
menu items as appropriate in m_frame.

Creating your own Alternatively, you can implement your own customized menus, separate from
menus m_master. If you do, consider using the menu service of_SendM essage menu
function to implement PFC message router functionality.

Extending PFC menus

If you use PFC menus, you will need to modify them or their descendantsto
provide application-specific processing. When you add new menu bar items
and menu items, PFC uses the PowerBuilder Shift Over/Down attribute to
control where menu items are placed:

On this menu | PowerBuilder inserts new items

Menu bar Between Tools and Window
File menu Above Delete

Edit menu Above Update Links

View menu Above Ruler

Tools menu Above Customize Toolbars

Window menu | Below Undo
Help menu Above About

For complete information on the Shift Over/Down feature, see the
PowerBuilder User’s Guide.

Creating your own menus

PFC menus provide menu items to cover most eventsin PFC controls. Your
application may have more specific requirements that justify creating a menu
from scratch for use with your PFC windows.

202 PowerBuilder

CHAPTER 6 Using PFC Windows and Menus

Creating menus

Communicating with
windows

Enabling items on the
Window menu

PFC Library User’s Guide

Use the Menu painter to create your menus. Add just the items required for
your application, defining shortcut keys, accelerators, and toolbar bitmaps as
needed.

Creating an extension level
If you are an object administrator creating menus for use by multiple

developers and applications, consider creating an ancestor menu (with
PowerScript and PFC code) and an empty extension level menu for use by
developers.

Depending on your needs, you can use either your own menu-window
communication method or the PFC message router. When using the message
router, it’ sbest to use the menu service of_SendMessage functionto call events
on the window. Each menu item calls of _SendM essage, passing the name of
the event to call. For example, the Clicked event for the Edit>Cut menu item
calls of_SendMessage as follows:

n_cst_menu lnv_menu

Inv_menu.of SendMessage(this, "pfc Cut")
There are two menu items that require specia attention:
» File>Exit Call the application manager pfc_Exit event:
gnv_app.Event pfc Exit ()

* MRU menu items (File menu) Copy the menu item text to
Message.StringParm before calling of SendM essage:

n_cst_menu 1lnv_menu

Message.StringParm = this.Text
Inv_menu.of SendMessage(this, "pfc MRUClicked")

Copy and paste
You can save time by copying and pasting menu item scripts from

pfc_m_master.

When the window sheet manager serviceis enabled, PFC menusautomatically
enable and disable Window menu items as appropriate. If you are using the
sheet manager service and want that functionality in your menus, copy the code
from the pfc_m_master Window menu item Selected event.

203

Using menus with PFC

Using standard menu items

M_master contains menu items that invoke user events on the corresponding
window. Use menu items as follows:

File menu

Edit menu

204

« If the menu item does not apply to awindow Makeitinvisible.

« If the menu item applies to awindow Review PowerScript codeinthe
corresponding user event for the associated window, Datawindow, or

visual control.

Each of the m_master menu items triggers certain events. Some of these user
events are empty; you must add the appropriate PowerScript code to perform
application-specific processing.

For more information on PFC user events, see the PFC Object Reference.

Menu item Event triggered Object(s) containing user event

New pfc_New W_master

Open pfc_Open u_rte, w_master

Close pfc_Close W_master

Save pfc_Save u_rte, w_master

Save As pfc_SaveAs u_rte, w_master

Print pfc_Print u_dw, u_rte, w_master

Print Preview pfc_PrintPreview u_dw, u_rte

Page Setup pfc_PageSetup u_dw, w_master

Print Immediate | pfc_Printimmediate u_dw, u_rte, w_master

Delete Empty menu item Add your own events or functions

Properties Empty menu item Add your own events or functions

Exit pfc_exit N_cst_appmanager

Menu item Event triggered Object(s) containing user event

Undo pfc_Undo U_dw, u_em,u_mle, u_rte, and u_se

Cut pfc_Cut U_ddib, u_ddplb, u_dw, u_em,
u_mle, u_oc, u_rte, and u_se

Copy pfc_Copy U_ddib, u_ddplb, u_dw, u_em,
u_mle, u_oc, u_rte, and u_se

Paste pfc_Paste U_ddlb, u_ddplb, u_dw, u_em,
u_mle, u_oc, u_rte, and u_de

Paste Specia pfc_PasteSpecia U_oc

Clear pfc_Clear U_ddib, u_ddplb, u_dw, u_em,

u_mle, u_oc, u_rte, and u_de

PowerBuilder

CHAPTER 6 Using PFC Windows and Menus

View menu

Insert menu

PFC Library User’s Guide

Menu item Event triggered Object(s) containing user event

Select All pfc_SelectAll U_ddlb, u_ddplb, u_dw, u_em,
u_mle, u_rte,andu_sle

Find pfc_FindDlg U_dwandu_rte

Replace pfc_ReplaceDIg U_dwand u_rte

Update Links pfc_UpdateLinks U oc

Object>Edit pfc_EditObject U_oc

Object>0Open pfc_OpenObject U_oc

Menu item Action Object containing user event

Ruler pfc_Ruler U_dw and u_rte

Large Icons Empty menu item. Add logic to u_lvsto switch to large
icon view

Small Icons Empty menu item Add logic to u_lvsto switch to small
icon view; call from this menu item

List Empty menu item Add logicto u_lvsto switch to list
view; cal from this menu item

Details Empty menu item Add logic to u_lvsto switch to detail
view; cal from this menu item

Arrange Empty menu item Addlogictou_lvsto arrangeiconsby

Icons>By some common property; call from
this menu item

Arrange Empty menu item Add logicto u_lvsto arrangeicons;

Icons>Auto call from this menu item

Arrange

First pfc_FirstPage U_dw and u_rte

Next pfc_NextPage U_dw and u_rte

Prior pfc_PreviousPage U_dw and u_rte

Last pfc_LastPage U_dwand u_rte

Sort pfc_SortDlg U_dw

Filter pfc_FilterDIg U_dw

Zoom pfc_Zoom U_dw

Menu item Event triggered Object(s) containing user event

File pfc_InsertFile U_rte

Picture pfc_InsertPicture U_rte

Object pfc_InsertObject U_oc

205

Using menus with PFC

Tools menu

Window menu

Help menu

Menu item Event triggered Object(s) containing user event
Customize pfc_Toolbars W_frame

Toolbars

Menu item Action Object containing user event
Cascade pfc_Cascade W_frame

Tile Horizontal pfc_TileHorizontal W-_frame

Tile Vertical pfc_TileVertical W_frame

Layer pfc_Layer W._frame

Minimize All pfc_MinimizeAll W_frame

Windows

Undo pfc_UndoArrange W_frame

Menu item Event triggered Object(s) containing user event
Help Topics pfc_Help W_master

About of About N_cst_appmanager

Using pop-up menus

PFC also provides pop-up menus for use by your applications and PFC
services. The pop-up menu provided depends on the control that you right-
click. You can disable the pop-up menu functionality by setting the
ib_rmbmenu instance variableto FAL SE in acontrol’s Constructor event. You
can also extend the pop-up menus to add application-specific functionality.

206

For alist of the pop-up menus provided for standard controls, see“ Using right-

mouse button support” on page 131.

PowerBuilder

CHAPTER 7 PFC Utilities

About this chapter This chapter describes the PFC utilities and how to use them.

Contents Topic Page
Datawindow Properties window 207
SQL Spy 210
Security 213
Library Extender 225
Migration Assistant 226

DataWindow Properties window

The Datawindow Properties window allows you to:
e Selectively enable and disable Datawindow services
e View the PFC syntax for the selected service

* Access and modify Datawindow properties interactively, including:

Datawindow buffers

Row and column status

Statistics

Properties of all objects on the DataWindow object

The Datawindow Properties service isinvoked in Lesson 4, “Build the
First Sheet Window” of the PFC tutorial.

PFC Library User’s Guide 207

DataWindow Properties window

DataWindow The Datawindow Properties window has three tabs:
Properties window tab) .) . .
« Services Displaysalist of Datawindow services. Select a service and

click Enable or Disable as needed. Click Propertiesto display information
for the currently selected service:

Datawindow Properties - d_empall

Servicesl Buffers |StatusFIags|

The following Services are accessible:

[Multitakle =]

[PrirtPreview

[Regquired Calumn
v Resize

¥ Row Manager
v Fow Selection

-

Enable | Wizatile Braperty |

Drescription:
Provides Sort dialogs to facilitate the sorting of ;I
datawindow rows.

K

ok | bep |

- Buffers Click the right mouse button to display a pop-up menu that
allows you to manipulate rows:

Datawindow Properties - d_empall

Services Buffers | StatusFlags |

~ Bulf

i+ " Fitered ¢ Deleted
RowCount: 82 RowCount: RowCount:
Modified: 0 1] 1]
EmployeeManager First Hame L:ﬂ

1D 1D

501 Fran

105 501 Matthew Caobb

129 902 Philip Chin

148 1293 Julia Jordan

160 501 Raobert Breault

184 1576 Melizza E zpinoz
[« _>l_I

hdelete | Sort | FEilter |

ok | bep |

208 PowerBuilder

CHAPTER 7 PFC Utilities

Service dialog box
tabs

PFC Library User’s Guide

Status flags Change DatawWindow status flags as necessary. The Assist
Status Change check box allows you to perform two-step status changes

in one step:

Datawindow Properties - d_empall

Services | Buffers StatusFlags |

B HCI ..

[~ issist Status change

MNumber: 1 Status: INUtMUdiﬁEd! j
-~ Colurnn

Mame: emp_id

Statusz: I Mothodified! | = l

EmployeeManager First Hame L:ﬂ
1D 1D
501 Fran Wwhithe:
105 501 Matthew Caobb
129 902 Philip Chin
148 1293 Julia Jordan
160 501 Raobert Breault

184 1576 Melizza Espiiill
4 I I 3

ok | bep |

General

Sort Properties [%]
General | syntagl
Style I PowerScript Dialog j

I~ Colurmn header sorting

Header suffiz |_t
V¥ Wisible only columns
I Use display values for sorting

Highlight columns to exclude

bene_day_care -
bene_health_ins
bene_life_inz

birth_date

city

dept_id

emp_frname LI

0K

Each service displaysits own set of tabs that display its properties. This
example shows the tabs for the sort service:

Displays information about the selected service:

209

SQL Spy

+ Syntax Displaysthe PFC syntax used for the selected service:

Sort Properties [%]

General Syntax |

This.of_SetSon{True] =]

Thiz.inv_zort.of_SetStyle(iny_sort. DEFALLT]
Thiz.inv_sort.of_SetColumnHeader[FALSE]
Thiz.irw_zort.of_SetDefaultHeaderSuffis"_t")

Thiz.inv_zort.of_SetVizibleOnly[TRLUE]
Thiz.inv_zort.of_SetllzeDisplay[FALSE]

Usage Use the Datawindow Properties window to debug and test your application
and its use of DatawWindow services.

v To display the DataWindow properties window:

1 Enable the DataWindow Properties service by calling theu_dw
of SetProperty function:;

this.of SetProperty (TRUE)

2 When the DataWindow displays, right-click and select Datawindow
Properties.

The Datawindow Properties window displays.

SQL Spy

The SQL Spy utility traps and saves SQL automatically for Datawindows and
EXEC IMMEDIATE SQL statements. You can also use SQL Spy to display
and optionally modify Datawindow SQL statements, and to log native SQL.

Modifying SQL
If you are using an ODBC data source, you must set DisableBind to 1in the
connect string.

210 PowerBuilder

CHAPTER 7 PFC Utilities

Usage

PFC Library User’s Guide

SQL Spy logs SQL to afile, which you can optionally display in a pop-up
window.

To use SQL Spy, you call functionsto enablethe utility, to specify thelog file,
and to control display of thew_sglspy window. You can aso call afunction to
log native SQL .

You typically initialize SQL Spy from the application manager pfc_Open
event, although you can call SQL Spy functions from anywhere within an
application.

To enable SQL Spy:

1 Enablethe debugging service by calling then_cst_appmanager
of SetDebug function:

this.of SetDebug (TRUE)
2 Enable SQL Spy by calling then_cst_debug of SetSQL Spy function:
this.inv_debug.of SetSQLSpy (TRUE)

3 (Optional) Specify alog file by calling then_cst_sglspy of _Setl ogFile
function:

this.inv_debug.inv _sqglspy.of SetLogFile &
("c:\MyPFCApps\ThisApp\appdbug.log")

To display the w_sqlspy pop-up window:
e Calthen_cst_sglspy of OpenSQL Spy function:

gnv_app.inv_debug.inv_sglspy.of OpenSQLSpy (TRUE)

211

SQL Spy

Thew_sqlspy pop-up window displays the most recent entriesin the log
file:

' SQLSpy M=l B3

| [~ Batch Maode |

SOL History:

LClear |
Save |
LI Print |

Thew_sqlspyinspect dialog box allows you view and optionally modify SQL
before the DataWindow submitsit to the database.
v To display the w_sqlspyinspect dialog box:
e Cdlthen_cst_sglspy of SetBatchMode(FAL SE) function:
gnv_app.inv_debug.inv_sglspy.of SetBatchMode &
(FALSE)
v To usethe w_sqlspyinspect dialog box:
1 Update the database, inserting, deleting, or modifying rows.
Thew_sglinspect dialog box displays:

: Step |

[IPDATE "employee” SET "manager_id" = 6501 WHERE - B
“emnp_id" = 102 AND “maniager_id" = 501 AND “emp_frame" ﬂl

="Fran' AMD "emp_lname" = “Whitney' AMD "dept_id" = 100

IUpdate - dw_emp(1]

L

LI

AMD "street = '49 East Washington Street’ AND "city" = Cancel
‘Meedham' AND “state” = MA' AMD "zip_code” ='02192 _—I
MDD "phone” = '6175553985' AND “status” = ‘A" AND LI Cancel All |

2 Review the SQL statement, optionally modifying values.

212 PowerBuilder

CHAPTER 7 PFC Utilities

3 Click the appropriate command button:

+ Step Updatesthe current row and displaysinformation for the next
row to be updated

+ Resume Updatesthe current row and updates all remaining rows;
disable the SQL Spy inspect capability

« Cancel Doesnot update the current row and displays the next row
to be updated

e Cancel All Does not update all remaining rows

v Tolog a SQL statement manually:

e Codethen_cst_sglspy of SQL Syntax function, passing the SQL to be
logged:

String ls_sql

ls_sgl = "SELECT * FROM employee;"
gnv_app.inv_debug.inv _sqglspy.of SQLSyntax &
("Native SQL", String(Now()) + ": " + &
String(Today()) + ": " + 1ls sqgl)

Security

PFC provides a database-driven security system that requires minimal coding
in your applications. It allows you to populate a security database with
information, including:

e Window controls

e Datawindow columns

e User objects

e Menuitems

You then create a matrix of users and groups, controlling access to these items.

At execution time, PFC selectively enables, disables, or hides secureditems, as
specified in the security database.

PFC Library User’s Guide 213

Security

The PFC security system includes:

« The security administration utility ~Allowsyou to define users, groups,
items to be secured, and user access.

e The security scanner Scans user-specified objectsto gather
information on all items that can be secured.

« The security database Containsinformation on users, groups, itemsto
be secured, and user access to those secured items.

Delivered as a local database
PFC provides alocal database to hold security information. However, when

you implement security, you will want to use a server database.

Security by exception The PFC security capability provides security by exception. By default, the
security system uses the object’s current settings. This means that PFC
modifies settings only where specified explicitly in the security database.

The process The security administration utility is a PowerBuilder application you run in
order to:

e Define users and groups

* Runthe security scanner

» Define security for objects and controls

e Associate users and groups with objects and controls
In your applications, you add code to implement security:

In this object Add this code

Application manager Call then_cst_appmanager of _SetSecurity function to
enable the security service, n_cst_security
Application manager or | Establish a Transaction object, connect to the security
frame window database, and call the n_cst_security of _|nitSecurity
function

The of_InitSecurity function allows you to set a default
group for the user. The security system usesthis group if
there are no other group settings for the user

Windows that require Call the of_SetSecurity function in the window Open
security event

For more information on enabling security in your applications, see
“Implementing security in an application” on page 223.

214 PowerBuilder

CHAPTER 7 PFC Utilities

Defining users and groups

Overview

Usage

PFC Library User’s Guide

To use PFC security, you must define usersand groups. A user can be amember
of zero or more groups; user settings always override group settings.

You use the security administration utility to define users and groups, as well
as associate users with groups.

Use an existing target file
If you already have atarget file for your security administration utility, add it

to your PowerBuilder workspace, make sureit includesall the PFC librariesin
itslibrary list, and skip the first four stepsin the following procedure.

To define users:

1

Add an Existing Application target to your PowerBuilder workspace
(select File>New from the PowerBuilder menu bar, click the Target tab,
click the Existing Application target icon, and click OK).

On the Choose Library and Application page of the target wizard, select
the pfcsecurity_admin application in the PFCSECAD.PBL library in the
PFC\Security directory and click Next.

Onthe Set Library Search Path page of the target wizard, add all the PFC
librariesto the library list and click Next.

On the Specify Target File page of the target wizard, click Finish.

The default target filename has the same name as the security application
you selected with a PBT extension.

Select Run>Select And Run from the PowerBuilder menu bar, select the
security_admin target, and click OK.

Security administration database and INI file
If there are problems connecting to the PFC.DB database, check the

PFCSECAD.INI file and your workstation’s ODBC settings.

If you have moved the PFC security tables from PFC.DB to some other
database, you must update the Database section of the PFCSECAD.INI
file to reflect the appropriate database connection parameters.

Select File>User/Groups from the security administration utiltiy menu bar.

215

Security

The User/Group Management window displays:

} User/Group Management [_ O] =]
Uszers: Groups:
W
Mame : [qq
Description : |3
Priority : 0

7 Right-click in the Users column and select Add Item.

The Add User dialog box displays:
Description :
()8 I Cancel |

8 Type auser name and description. The user name must correspond to a
user ID that your application can access at runtime.

9 Click OK.
10 Continue adding users as necessary.
11 Select File>Save from the menu bar.

v To define groups:

1 Right-click in the Groups column and select Add Group.

216 PowerBuilder

CHAPTER 7 PFC Utilities

The Add Group dialog box displays:

I Add Group [%]
Description :

PFriority : 0

’TI Cancel |

2 Typeagroup name, description, and priority. Zero is the highest priority;
however, user specifications override group specifications.

Click OK.
4 Continue adding groups as necessary.
Select File>Save from the menu bar.

v To associate users with groups:

< Dragtheuser and drop it over the group.
v To remove a user from a group:
1 Right-click on the user and select Delete Item.
The Delete User from Group dialog box displays.
2 Click OK.
3 Select File>Save from the menu bar.
v To modify a previously defined user or group:
1 Right-click ontheitem and select Edit Item.
The Edit User or Edit Group dialog box displays.
2 Maodify information as necessary.
Click OK.

4 Select File>Save from the menu bar.

PFC Library User’s Guide 217

Security

Running the security scanner

The security scanner examines all the windows, DatawWindows, menus, and
user objectsin an application. It saves to the PFC database information on:

* Windows
e Window controls

» For DataWindow controls, information on the columns in the associated
Datawindow object

e Menuitems

e User objects and tab controals; collectsinformation on all controls defined
on the user object or tab page

Usage You can run the security scanner from PowerBuilder or you run it from the
security administration utility.
v To run the security scanner from PowerBuilder:

1 To your workspace, add an Existing Application target that uses the
PFCSECSC.PBL library and the pfcsecurity_scanner application.

Use an existing target if available
If thereisalready atarget file for the pfcsecurity _scanner application, just

add thisfile to your workspace instead of creating a new target file.

2 Select Run>Select And Run, choose the pfcsecurity _scanner target and
click OK.

If you have trouble connecting
If there are problems connecting to the PFC.DB database, check the

PFCSECAD.INI file and your workstation’s ODBC settings.

v To run the security scanner from within the security administration
utility:

1 Select and run the security administration utility (PFCSECAD.PBT).

See “Defining users and groups’ on page 215 for steps on adding the
security administration target file to your workspace.

2 Select File>Scan Application from the security administration utility
menu bar.

218 PowerBuilder

CHAPTER 7 PFC Utilities

PFC Library User’s Guide

The Select Application dialog box displays alist of the applications
defined in the Application section of the PB.INI file;

1 Select Appli =] B3

Application FPowerBuilder Library -

CashTrack e\program fileshsybase\PowerBuilder 7.04Code
Examples\CashT rak\cashtrak. pbl

customerclient E:%Program FileshSybaze’\PowerBuilder
T.Ohthree_tiersprojectshcustomerclient. pbl

cugtomerserver E:%Program FileshSybaze’\PowerBuilder
T.Ohthree_tierprojectshcustomerserver. pbl

examples e\program fileshsybase\PowerBuilder 7.04Code
ExampleshE xample Apphpbexamfe. pbl

peat e\program fileshspbazeiPowerBuilder
7. NPFChdemoapphpeat. pbl

plcexamp e\program fileshspbazeiPowerBuilder
7. OM\PFCAE xampleshappexamp. pbl

plcmeg e\program fileshspbazeiPowerBuilder
T.ONPFChpfemegplomeg. pbl

plczecurity_admin e\program fileshspbazeiPowerBuilder
T.ONPFCAS ecurityhpfcsecad. pbl

plczecurity_scanner e\program fileshspbazeiPowerBuilder
T.ONPFChzecunitypfosecse. pbl LI

= |

3 Select the application to be scanned and click Select.

The Select Objects to be Scanned dialog box displays:

Library Tyvpe M ame Date Comment &
e:\program fileshspbazehpowewindow w_for_center 3420499 10:58:32 |ancestor to responze windows.
centering logic.
indow w_sheet_ancestor 3/20/9910:58:33 | ancestor to all sheet windows
indow w_acct_mar_frame 3720499 10:58:33 | account manager mdi frame
Window w_check_detail 3/20/99 10:58:49 |check, deposit, withdrawal, pay
Window w_statement 3420499 10:58:48 |checking, savings, credit card,
wWindow w_checks_due 3420499 10:58:40 | shows recurring activity that has
posting selection
indow w_updateable_shest_ancest|3/20/93 10:58:33 | ancestor to all updateable shee
from w_shest_ancestor
indow w_delete_buffer 3/20/99 10:58:41 | display deleted rows available fo
Window w_about 3/20/9910:58:34 |an "about this application" resp
indow w_account_maint 3/20/99 10:58:34 |maintain account detail
WwWindow w_account_choice 3420499 10:58:35 | a pick window for account seler
Anfimcrin wi amalieis T T i ——
Scan | [Earce! Exit |

4 PresscTrL+click or sHIFT+click to select the objects to be scanned.

Selecting objects
To minimize the size of the security database, do not select objects for

which you will never assign security.

5 Click Scan.

219

Security

Scanner executable file .)
The security administration utility usesthe pfcsecsc.exefileto performthe

scan. PowerBuilder installs this file in the PFC Security directory.

6 When scanning completes, click Exit.
v To customize the controls for which security is enabled:
1 Select and run the security administration utility.
2 Select File>Templates from the security administration utility menu bar.
The Template Management window displays:

! Template Management [_ O] =]
1 Cantral Mame | Drescription | Object Type

3 Double-click on the application you just scanned.
A list of windows displays.

4 Double-click on one of the windows.

220 PowerBuilder

CHAPTER 7 PFC Utilities

A list of controls displays:

! Template Management

plczecurity_scanner
; phtutor

(=0 customers
B w_master_detail
------ B w_products

_10] x|
Control Mame Description Object Type «

dwi_detail [ratatwfindowe
dwi_detail address customer. address © char[35) Colurnrn
dws_detail.city cugtomer. city - char[20] Colurnrn
dwi_detail. company_name cugtomer.company_name : char[35] |Colummn
dwi_detail. fname cuztomer.fname : charl15] Colurnrn
dws_detail.id customer.id : long Colurnrn
dwi_detail Iname customer. Iname : char[20] Colurnrn
dwi_detail phone cuztomer. phone : char(12] Colurnrn
dwi_detail.state cugtomer. state : char(2) Colurnrn
dwi_detail.zip cugtomer. zip : char(10] Colurnrn
dwi_master [ratatwfindowe
dwi_master. company_name cugtomer.company_name : char[35] |Colummn
dwi_master. fname cuztomer.fname : charl15] Colurnrn
dwi_rnaster.id customer.id : long Colurnrn
dwi_rnaster. Iname customer. Iname : char[20] Colurnrn
n_- Menultem LI

5 Modify descriptions as appropriate.

Modifying descriptions on this window can make things clearer when
associating users and groups with windows, window controls, and menu

items.

6 Deleteitemsthat you will not secure by right-clicking over the item and

selecting Delete.

Deleting unnecessary items reduces the size of the security database,
increasing performance.

7 When you are through, select File>Save from the menu bar.

8 Continuethis process with all objects to be secured.

Defining security for users and groups
After running the scanner to record objects and controls and selectively

deleting items that don’t require securing, you specify security by associating
users and groups with objects and controls.

Usage

PFC Library User’s Guide

For each user and group, you enable or disable access to window controls,
Datawindow columns, user objects, and menu items for each object to be

secured.

Users may belong to zero or more groups. User settings always take
precedence over group settings. If there are no user settings, then the group
setting with the highest priority is used (zero is the highest priority).

221

Security

v To define security for a user or group:

1

6

7

222

Select and run the security administration utility (PFCSECAD.PBT).

See “Defining users and groups’ on page 215 for steps on adding the
security administration target file to your workspace.

Select File>Users/Objects from the menu bar.
The User/Object Management window displays:

} User/Object Management M=l B3
Display Contiols
Users : z
= Tl | F hctivelny © 4l
Control [staws | Description [Typs |

Click the Users drop-down list and select a user for whom to set security.
Double-click the application containing the objects to be secured.
Select the All radio button (if it's not already selected).

You are now ready to secure items.

i User/Object Management [_ O] %]
BE cot | Users: Display Controls
B o emplopeeal = 4 Bil Jones : HR Consultant - © Active Orly & All
g mgenern fare Coniol EETE e T
= r\icgsl E;Dpimanaga ch_delete Mot Set [«]Delete commandbutton
o ch_update Mot Set | =] Update commandbutton
B w_gerapn_sbout | |24 Mot et |= datawindow
B w_gerapn fame | |dw1.bene_day care Mot St | =] employes bene_day_care: char(1] | Column
B w_gerapn_shest | |d1.bene_health ins Mot St | =] employes bene_health_ins : char(1] | Calumn
B8 w_genapp_tookar, |3#_1-bene Ife ins Mot Set | >] emplayes bene_lite_ins : charl1] Colurmn
- - dw_1hirth_date Mot Set | =] employes bith_date - date Colurmn
dw_1.city Mot Set || emplayes.city : char(20] Colurmn
dw_1.dept_id Mot Set || emplayes.dept_id - long Colurmn
dw_1.emp_fhame Mot Set | =] employes.emp_tname : char(20) Colurmn
dw_1.emp_id Mot Set | =] employes.emp_id : lang Colurmn
dw_1.emp_lname Mot St | =] employes. emp_Iname : char20] Colurmn
dw_1.manager_id Mot Set | =] employes manager_id : long Colurmn
dw_1.phane Mot St | =] emplayes. phone : char(10] Colurmn
dw_1_zalary ~| employee. salary - decimall3] Colurmn
dw_1.sex Mot Set | =] employes.sex: charl1] Colurmn
4] | | | H o2

For itemsto be secured, use the Status drop-down list to specify Enabled,
Disabled, or Invisible (Not Set makes no change to the object’s settings).

When you are finished, select File>Save from the menu bar.

PowerBuilder

CHAPTER 7 PFC Utilities

8 Continue with the object until you are finished with all users and groups.

9 Continue with other objects.

Implementing security in an application

Once you have defined a security database, enable the security service in your
application.

Usage Enabling the security service in your application involves:
« Enabling the security service

« Establishing a database connection to the database that contains the
security tables and communicating thisinformation to the security service

« Enabling the security service on the appropriate windows

v To enable the security service for an application:
e Calthen_cst_appmanager of _SetSecurity function:

gnv_app.of SetSecurity (TRUE)

v To establish a connection to the database containing the security tables
and communicate it to the security system:
1 Create a Transaction object and connect to the database (this example
assumes an itr_security instance variable on a customized
n_cst_appmanager descendant):

gnv_app.itr security = CREATE n tr
gnv_app.itr security.of Init &
(gnv_app.of GetAppINIFile(), "Security")

gnv_app.itr security.of Connect ()

Security table placement
To minimizethe number of database connections held by your application,

place the security tablesin the application database.

PFC Library User’s Guide 223

Security

2 Cdl then_cst_security of InitSecurity function:

Integer 1li return

1li return = &
gnv_app.inv_security.of InitSecurity &
(gnv_app.itr security, "EISAPP", &
gnv_app.of GetUserID(), "Default")

v To enable security for a window:

e Cdl then_cst_security of SetSecurity function in the window’s Open or
pfc_PreOpen event:

gnv_app.inv_security.of SetSecurity(this)

Maintaining the security database

The PFC security system tables are delivered in the PFC.DB local database.
The PFC security tables are:

Security_apps
Security_groups
Security_info
Security_template
Security_users

You can use the PFC.DB local database to define users and groups, scan
objects, and define access privileges. However, you will need to migrate these
tablesto a server database before deploying applications. The PFC security
system and the security database are designed for easy migration to a server
database:

» All database interactions for PFC security are via DatawWindows (thereis
no embedded SQL)

» The PFC security system enforces cascading deletes manually

224 PowerBuilder

CHAPTER 7 PFC Utilities

Usage To enable security for al of your application’s users, move the PFC security
tablesto a server database.

v To migrate PFC security tables to a server database:

1 Usethe Pipeline painter to move table definitions and data to a server
database. Retain the table and column names as much as possible.

2 Usethe DataWindow painter to access the PFC security DatawWindows.
Note the following:

¢ Preserve the Datawindow’s column order and DatawWindow column
names.

e If necessary, use the Select Painter to change the name of the
associated database tables or columns to match those on the server
database. Remember not to change the name of the DataWindow
columns.

3 Inyour application, populate Transaction object fields as appropriate for
the server database containing the security tables.

Library Extender

You use the PFC Library Extender to automatically create and populate an
intermediate extension level between two existing levels, redefining the
inheritance hierarchy.

By supplying the Library Extender with the names of the upper and lower
levels, the Library Extender:

¢ Createsanew PBL

« Createsobjectsin the new PBL that descend from objectsin the upper
level

PFC Library User’s Guide 225

Migration Assistant

Usage

» Recreatesobjectsinthelower level such that they descend from objectsin
the new PBL

-[E PFC Library Extender - 5 pecify Application Object

Fleaze pick a Jibrary containing the application to use in building the new
FFC extensions.

| [|
£ Al
B Acrobatd J
-] Cafe
-] COMPLIE
-] DTEXT23
- EXCEL

----- [_] Exchangs
-] FMSGMLE

[~ Skip, let me build extensions withaut an application

< Back | dEwt I

Cancel | Help |

Typically you would use the Library Extender to add an intermediate level (or
levels) between the PFC ancestor level and the PFC extension level. Adding
corporate and departmental extensions to intermediate extension levelsallows
the application programmer to make full use of the extension level.

The Library Extender is available on the Tool tab in the New dialog box.

For complete usage information, see the Library Extender online Help.

Migration Assistant

Usage

226

The Migration Assistant scans PowerBuilder libraries (PBLSs) and highlights
usage of obsolete functions and events. Obsol ete functions and events till
work in the current version of PowerBuilder but may not work in future

versions. If you plan on maintaining an application in the future, it's best to use
current syntax and events.

The Migration Assistant is available on the Tool tab in the New dialog box.

For complete usage information, see the Migration Assistant online Help.

PowerBuilder

CHAPTER 8 Deploying a PFC Application

About this chapter This chapter explains considerations related to PFC application
deployment.
Contents Topic Page
Choosing a deployment strategy 227
Using PBR files 229
Deploying database tables 229
Deploying PFC dialog box Help 230

Choosing a deployment strategy

You use PFC to build production-strength applications. As with all
production-strength applications, deploying a PFC application requires
careful planning and implementation.

Your goal Your deployment strategy must provide user workstationswith everything
they need to execute a PFC application:

e Application executable (EXE) file
e Application PBDsor DLLs (if not using asingle EXE file)
e PFCPBDsor DLLs(if not using asingle EXE file)

e Other files and entries used by your application (ActiveX controls,
registry entries, INI files, bitmaps, and so on)

« PowerBuilder execution modules (may aready be installed on the
user workstation)

e Database client software (may already be installed on the user
workstation)

PFC Library User’s Guide 227

Choosing a deployment strategy

Four deployment A PFC application has the same four deployment options as any other
options PowerBuilder application. Each of these options has relative advantages and
disadvantages that you need to consider before choosing a deployment
strategy:
Deployment
option Advantages Disadvantages
Pcode Singlefile Large (minimum 3M)
executable Simple deployment To update, you must regenerate the
entire application
Compiled Singlefile Very large (minimum 8M)
executable Simple deployment To update, you must regenerate the
Compiled code entire application
Pcode PBDs Smaller EXE Multiplefiles
To update, you can Needs separate set of physical files
replace asingle PBD
Compiled Smaller EXE Multiplefiles
DLLs Compiled code Needs separate set of physicd files
To update, you can
replaceasingle DLL

Physical file issues |If your applications use Pcode PBDs or compiled
DLLs, they usually need a separate set of physical filesfor each deployed PFC
application. Thisisbecause of theinternal interdependenciesthat trickle down
from high-level extension objects, such asw_master, n_cst_dwsrv,

n_cst winsrv, and n_cst_dssrv.

See “ Setting up the application manager” on page 29.

Using a common set of physical files
If no deployed application has made changes to either the PFC ancestor layer

or the PFC extension layer, applications can share PBD or DLL files. But to
ensure ease of maintenance and upgrade, it's still best to provide separate
physical PBD and DLL filesfor each deployed application.

228 PowerBuilder

CHAPTER 8 Deploying a PFC Application

Using PBR files

PFC shipswith six PBR files:
e Onefor use when placing the bitmaps in the EXE

e Asetof five for use when distributing PBDs or DLLs

Use these files as follows:

What happens

What happens

Deployment | PBR file(s) when you deploy when you deploy
method to use with PBR without PBR
Placing the Pfc.pbr Bitmaps and This option will not
bitmapsina | (ThispBR dynamically referenced | work (dynamic
single EXE includes Datawindow objects Datawindow
dynamic arecopiedintothe EXE | referenceswill fail)
Datawindow
references)
Distributing Pfcapsrv.pbr The bitmapsnamed in | You must deploy
PBDsorDLLS | pregwsrv.pbr | €ch PBRfileare bitmap files separately
Pfcmain. pbr copied into the and make sure they are
) associated PBD or DLL | inadirectory that is
Pfeutil.pbr accessible at execution
Pfcwnsrv.pbr time

Deploying database tables
PFC ships with the PFC.DB database.

Table references

Although no PFC services reference PFC.DB directly, certain services
reference tables that were originally shipped in PFC.DB:

PFC service

Tables referenced

Error message service (n_cst_error)

Messages

Security service (n_cst_security) Security_apps
Security_groupings
Security_info
Security_template

Security_users

PFC Library User’s Guide 229

Deploying PFC dialog box Help

What to do

To minimize the number of database connections held by your application, it's
usually best to move these tables to the application database.

In any case, your application deployment strategy must provide for user access
to al databasetablesrequired by the application. Thisincludesinstalling client
software, updating INI files, updating registry entries, and all other database
deployment considerations outlined in the database deployment discussion in
Application Techniques.

Deploying PFC dialog box Help

230

PFC includes the PFCDL GHLP file, which contains online Help for PFC
dialog boxes. If your application uses PFC dialog boxes (such asw_find,
w_replace, and w_sortdragdrop) you should deploy PFCDLGHLP so users
will have dialog box Help.

PFC aso includes PFCDLG.RTF, which contains the source text for PFC
dialog box Help. If your application makes specific use of PFC dialog boxes,
you can modify this file and recompile the Help file.

PowerBuilder

PART 4 PFC Tutorial

This part provides a simple tutorial to get you started with
PFC.

This part is for all PFC users.

LESSON 1

PFC Library User’s Guide

Generate a PFC Application

In this tutorial, you generate a PFC application using the Template
Application wizard. You will then create a user object to inherit from

the

PFC application manager object and you will redirect events from the

Application object to the newly created user object.
In thislesson you will:

e Create a PFC application

* Modify the application manager

* Redefineaglobal variable and review events

e Usethe PFC Transaction Object service

How long will this lesson take?
About 20 minutes.

What will you learn about PFC?

¢ How to create a PFC application using the Template Application
wizard

¢ How to usen_tr, PFC’'s customized Transaction object

* How to use the application manager

233

Create a PFC application

Create a PFC application

234

Where you are
> Create a PFC application
Modify the application manager
Redefine a global variable and review events
Use the PFC Transaction Object service

When you start PowerBuilder, you must open an existing workspace or
generate anew one. In this exercise, you create an application target in a new
PowerBuilder workspace. The application will use and inherit from objectsin
the PFC libraries.

Required tutorial setup
Thistutoria usesthe EAS Demo DB database that installs with PowerBuilder.

Thisisan Adaptive Server Anywhere database and requires an Adaptive
Server Anywhere engine.

If you do not already have Adaptive Server Anywhere on your local machine
or server, you must install it now. (You can install it from the PowerBuilder
CD.) If you installed PowerBuilder in a nondefault location, you must make
sure that the odbc.ini registry entry defining the EAS Demo DB as a data
source points to the correct location of the Adaptive Server Anywhere engine.

1 Select File>New from the PowerBuilder menu bar.
Make sure that the Workspace page of the New dialog box displays.
Select the Workspace wizard and click OK.

A file selection dialog box displays.

2 Type PFC Tutorial in the File Name box and click OK.

Anicon for the new workspace displaysin the System Tree. If the System
Treeis not displayed, select the System Treetool in the toolbar or select
the System Tree menu item in the Window menu.

3 Select File>New from the PowerBuilder menu bar.
Click the Target tab of the New dialog box.
Select the Template Application wizard and click OK.

The wizard displaysintroductory information about itself.

PowerBuilder

Lesson 1 Generate a PFC Application

PFC Library User’s Guide

Click Next twice until you see the Specify New Application And Library
page.
Type my_pfc_app in the Application Name box.

The wizard resets default filenames for the application library and target.

Click the ellipsis button next to the Library box.

Navigate to the PFC tutorial directory.

Make sure my_pfc_app.pbl displays in the File Name box and click
Save.

In atypical installation, the PFC tutorial directory is: C:\Program
Files\Sybase\PowerBuilder 9.0\PFC\Tutorial.

Click the ellipsis button next to the Target box.

Navigate to the PFC tutorial directory.

Make sure my_pfc_app.pbt displays in the File Name box, click Save
and click Next.

Select the PFC-Based Application radio button on the Specify
Application Type page and click Next again.

The Adjust Application Library Search Path page displays. The
my_pfc_app.pbl fileisthe only library in the list box.

Click the ellipsis button next to the Library Search Path list box.
A standard library selection dialog box displays.

Navigate to the PFC directory (one level above the PFC Tutorial
directory).

Use cTRL+click or sHIFT+click to select these libraries from the main
layer and the extension layer:

235

Create a PFC application

Select Library

Look jr: I (2] Pfc

= & =

File name: I"pfcapsrv.pbl" "pfcdwsry. pbl'* "pfemain. pbl™ 'pf Open I

Files of type: |PB Libraries [*.phil] j Cancel |
Help |
PFC main layer libraries | PFC extension layer libraries
pfcapsrv.pbl pfeapsrv.pbl
pfcmain.pbl pfemain.pbl
pfewnsrv.pbl pfewnsrv.pbl
pfcdwsrv.pbl pfedwsrv.pbl
pfeutil.pbl pfeutil.pbl

10 Click Open.

TheLibrary Search Path list box redisplayswith PFC libraries added to the

list.

11 Click Next twice until you see the Ready To Create Application page.

PowerBuilder summarizes your wizard selectionsin alist box. The
Generate To-Do List check box is selected.

12 Click Finish.

236

PowerBuilder

Lesson 1 Generate a PFC Application

Modify the application manager

PFC Library User’s Guide

Where you are
Create a PFC application
> Modify the application manager
Redefine a global variable and review events
Use the PFC Transaction Object service

When you use the Template Application wizard to create a PFC application, it
redirects Application object processing to a PFC application manager. This
strategy provides many benefits, including extensibility and reuse.

You implement the application manager through the n_cst_appmanager
custom class user object or acustomized descendant. Thistutorial implements
the application manager by creating a descendant of n_cst_appmanager. You
then initialize application-wide variablesin the new application manager.

For more information on implementing the application manager, see Chapter
3, “PFC Programming Basics’.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Make sure My_PFC_App. displays in the Target list box.
Select pfeapsrv.pblin the Libraries drop-down list.
Select User Objects in the Objects of Type drop-down list.

You can enlarge the dialog box to display the full library name.

Inherit From Object [x]
Object: |

[n_cst_appmanager
Cancel |

Help

n_cst_aboutatinb

n_cst_apppreference
Mot color
n_cst_columnatib
H et corwersion
n_csl_datetime =l

Comments:

E xtension &pplication Manager service

Application Libraries

Es\SybaseNPowerbuider 7. 0vplcipioapsry bl
E\S pbase! PowerBuilder 7.04p(chpledwsry pbl
Es\SybasetPawerBuider 7.04pichplomain pbl
E\S pbase! PowerBuider 7.04pichpioutl pbl
Es\SybasetPawerBuider 7.04ptchplcwnsry pbl
Co\S erBuilder 7.0'pichpicapsry.pbl

Object Type:

|‘g User Dbjects

237

Modify the application manager

238

Select n_cst_appmanager in the Object list box and click OK.

The User Object painter workspace displays. The default view layout
scheme for the User Object painter includes a Script view, a Properties
view, aNon-Visual Object list, and a stack of tabbed panes. Within the
stack you can display the Event List, Function List, or Variable view.

Resetting to the default view layout scheme
To reset the layout to the default scheme, select View>Layouts>Default.

Make sure Untitled displays as the name of the user object in the first
drop-down list of the Script view.

Make sure the Constructor event displays as the selected event in the
second drop-down list of the Script view.

The purpleicon in front of the Constructor event name indicates that a
script iscoded for thisevent in an ancestor object. In PowerBuilder, events
(unlike functions) are triggered first in the ancestor object, then in the
descendent object.

Select pfc_n_cst_appmanager from the third drop-down list of the
Script view.
Examine the code for the ancestor object.

Most of the ancestor script is commentary. The code for the ancestor
Constructor event consists of an assignment statement (that assigns the
Application object to an instance variable) and acall to the
GetEnvironment system function that popul ates the Environment object.

Type the following information in the boxes in the Properties view
(replace drive and pathname with your workstation’s path to the PFC
directory):

Property Value

is appinifile | drive:)\pathname\pfc\tutorial\pfctutor.ini
is_helpfile drive:\pathname\pfc\tutorial\pfctutor.hip
is version PFC9.0

is logo drive:\pathname\pfc\tutorial\tutsport.bmp
is_copyright PFC tutorial application

PowerBuilder

Lesson 1 Generate a PFC Application

Thefirst two properties establish an INI file and online Help file for use
with the application. The other properties establish information that will
be used in the application’s About dialog box and splash screen.

Properties - [Untitled] inherited from n_cst_appmanager B3

General |

I Autalnstantiate
EAServer Project
I~ ib_microhelp
iz_appinifile

| d:program fileshspbasepb3\plctutorial\pictutor.ini
iz_userinifile

iz_appkey

iz_userkey

iz_helpfile

|d:\program fileshspbaszetpbIpicitutorialypfctutor. hip
iz_version

|PB 3.0

iz_logo

|d:\program fileshspbaszepb I picitutorialibutzport. brp
iz_usernd

iz_copyright

|F'FEI Tutorial Application

If you prefer to add code to the Constructor event
You could type the following lines of code calling PFC functions instead

of filling in the property boxes in the Properties view:

this.of SetAppIniFile &
("drive:\pathname\pfc\tutorial\pfctutor.ini")
this.of SetHelpFile &
("drive:\pathname\pfc\tutorial\pfctutor.hlp")
this.of SetLogo &
("drive:\pathname\pfc\tutorial\tutsport.bmp")
this.of SetCopyright ("PFC Tutorial application.")
this.of SetVersion("PFC 9.0")

7 Select File>Save As from the menu bar.

The Save User Object dialog box displays.

PFC Library User’s Guide 239

Modify the application manager

8 Select my_pfc_app.pblin the Application Libraries box.
Type n_cst_tutappmanager in the User Objects box.
Type the following comment in the Comments box:

This is the PFC tutorial application manager.

9 Click OK.

PowerBuilder saves the user object and redisplays it in the User Object
painter workspace. The n_cst_tutappmanager name now displaysin the
painter title bar, in the Non-Visual Object List view, and in the first
drop-down list of the Script view.

10 Select File>Close from the menu bar.

240 PowerBuilder

Lesson 1 Generate a PFC Application

Redefine a global variable and review events

Where you are
Create a PFC application
Modify the application manager
> Redefine a global variable and review events
Use the PFC Transaction Object service

When you generate a PFC application using the Template Application wizard,
al the events of the Application object call corresponding eventsin the
application manager (n_cst_appmanager or a descendant of
n_cst_appmanager). For example, the Open event calls the application
manager’s pfc_Open event, the Close event calls pfc_Close, and so on.

PFC usesthe gnv_app global variable to access the application manager at
runtime. Now you will modify this variable to use the customized application
manager and you will review the events of the Application object that are
redirected to the application manager.

1 Click the Open button in the PowerBar.
Select my_pfc_app.pblin the Libraries list box.
Select Applications in the Objects of Type drop-down list.

The Object box displays the only application (my_pfc_app) in thelibrary
file you selected.

2 Click OK.
The Application painter displays the my_pfc_app Application object.

3 Make sure the Script view displays the Open event for the my_pfc_app
Application object.

Thefirst line of codeisan assignment statement that creates an instance of
the application manager and assignsit to the global variablegnv_app. The
next line of code calls the pfc_Open event of the application manager.

PFC Library User’s Guide 241

Redefine a global variable and review events

242

Script - open for my_pfc_app returns [Mone]]
Imy_pfc:_app 'l I open [sting commandline | returns [none] 'l I 'l gl@l

gnv_app = create n_cst_appmanager -

gnv_app .Event pfc_open { commandline }

Change the first line of code to:
gnv_app = CREATE n_cst_ tutappmanager

The code will now create an instance of the application manager
descendant, not the PFC ancestor. You do not change the second line of
code, but you will change the global variable data type declaration.

PFC login window
The PFC login window is not used in this tutorial, but if you want alogin

window at runtime, you could add the following line to the application
object Open event:

gnv_app.of LogonDlg ()

Typing thisline before the call to the pfc_open event assuresthat thelogin
window will open before the connection is made to the database. If you
want to make a database connection with user-entered information from
the login window, you would have to add code to the Clicked event of the
OK button in the w_logon window—and then make sure that that
information is not overwritten by information in pfctutor.ini that you
selected asthe application INI file.

Select Global Variables in the second drop-down list in the Variable
view.

The Variable view displaysthe global variable declarations.

Using the Script view
You can use the Script view instead of the Variable view, if you select

Declare in the first drop-down list. PowerBuilder will prevent you from
opening two views to the same script, so you won’'t be ableto do thiswhen
the Variable view displays the Global Variables script.

PowerBuilder

Lesson 1 Generate a PFC Application

PFC Library User’s Guide

Modify the gnv_app global variable declaration to use
n_cst_tutappmanager:

n_cst_tutappmanager gnv_app

By defining gnv_app astype n_cst_tutappmanager, you gain access to all
n_cst_appmanager functionality aswell as any new instance variables,
user events, and functions defined in n_cst_tutappmanager.

Make sure my_pfc_app displays in the first drop-down list of the

Script view.

Review the Application object’s precoded events:

Event

What it does

Close

Calls the application manager’s pfc_Close event and
destroys gnv_app

ConnectionBegin

Callsthe application manager’s pfc_ConnectionBegin
event, passing three arguments and returning the
connection privilege (for use with distributed applications)

ConnectionEnd

Callsthe application manager’s pfc_ConnectionEnd event
(for use with distributed applications)

Idle

Callsthe application manager’s pfc_ldle event

SystemError

Calls the application manager’s pfc_SystemError event

243

Use the PFC Transaction Object service

Use the PFC Transaction Object service

Where you are

Create a PFC application

Modify the application manager

Redefine a global variable and review events
> Use the PFC Transaction Object service

Now you will look at the definition for the default Transaction object. In
standard PowerBuilder applications, SQLCA (SQL Communications Area) is
defined as the default Transaction object. In PFC applications, the default
Transaction object is assigned by the PFC transaction object service.

The n_tr user object is a Transaction object defined in pfemain.pbl. It inherits
from the pfc_n_tr object in the pfcmain.pbl library. In this exercise, you will
see how the SQL CA Transaction object is registered with the PFC transaction
registration service (the registration was set automatically by the Template
Application wizard).

If you are not continuing directly from the previous exercise
If you closed the Application painter, you must reopen it to display the global

SQLCA variablesthat are automatically part of any PowerBuilder application.

1 Click the Additional Properties button on the General page of the
Properties view for the Application object.

The Application property sheet shows additional propertiesin atab page
format.

244 PowerBuilder

Lesson 1 Generate a PFC Application

2 Click the Variable Types tab.

Text Font | Column Font I Header Font I
LabelFort | lcon Yariale Types

SOLCA:

In_tr

SOLDA:
Idynamicdescriptionarea
SOLSA:

Idynamicstagingarea

Ermar:

IE”D[

Meszage:

|n_msg

QK I Cancel | Lol | Help |

3 Look at the SQLCA variable definition.

PowerBuilder uses PFC’s n_tr transaction for SQLCA. If you had
generated an application that did not specify PFC libraries, the value

assigned to the SQLCA global variable would have been "transaction” .

4 Look at the Message variable definition.

The global variable callsthe PFC’'s n_msg service.
5 Close the Application property sheet.

Select File>Save from the menu bar.

PowerBuilder saves the updated Application object.

6 Select File>Close from the menu bar.

The Application painter closes.

PFC Library User’s Guide 245

Use the PFC Transaction Object service

246 PowerBuilder

LESSON 2 Create the Frame Window

In atypical MDI application, you define awindow whose type is MDI
frame and open other windows as sheets within the frame. PFC provides
w_frame, aframe window that includes many MDI features, including a
status bar and a sheet manager.

In thislesson you will:

Create a descendent frame window
Define pre- and post-open processing
Add script to open the frame window

Run the application

How long will this lesson take?
About 15 minutes.

What will you learn about PFC?

How to open a sheet using a string passed via the message router
How to enable the status bar service
How to enable the sheet management service

How to connect to adatabase using functions provided by n_tr

PFC Library User’s Guide

247

Create a descendent frame window

Create a descendent frame window

248

Where you are

> Create a descendent frame window
Define pre- and post-open processing
Add script to open the frame window
Run the application

Now you will create aframe window by inheriting from w_frame. Then you
will define a script for the pfc_Open script for the new frame window. PFC
calls this event when the user selects File>Open from the menu bar. You can
call it from other parts of the application as necessary to open sheet windows.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Select the pfemain.pbl file in the Libraries list box.
Select Windows in the Objects of Type drop-down list.
Select w_frame in the Object list box and click OK.

The Window painter workspace displays.

3 Type PFC Tutorial Frame in the Title box in the Properties view.
Click the Toolbar tab in the Properties view.
Clear the ToolbarVisible check box.

You will not use atoolbar in the frame window, only in the sheet windows.

4 Double-click pfc_Open in the Event List view.

The Script view displaysfor the pfc_Open event. If a Script view ispart of
the stack with the Event List view, the Script pane will display in place of
the Event List pane.

Finding the pfc_Open event in the Event List view
Theeventsinthe Event List view (and Script view) are a phabetized in two

different series—events with code are listed before events without code.
The pfc_Open event is not precoded in any of its ancestor scripts.

PowerBuilder

Lesson 2 Create the Frame Window

PFC Library User’s Guide

Type these lines in the Script view:
String ls_sheet
w_sheet 1w_sheet
ls _sheet = Message.StringParm

OpenSheet (1w_sheet, 1ls sheet, this, 0, Layered!)

This script will open an instance of the sheet window specified in the
passed StringParm. You will initialize the StringParm value for two sheset
windows later in this tutorial.

249

Define pre- and post-open processing

Define pre- and post-open processing

250

Where you are
Create a descendent frame window

> Define pre- and post-open processing

Add script to open the frame window
Run the application

Now you will define two scripts: one for the pfc_PreOpen event to enable the
sheet manager and status bar services, and one for the pfc_PostOpen event to
connect to the database.

1

Select pfc_PreOpen from the second drop-down list in the Script view
and type these lines:

this.of SetSheetManager (TRUE)
this.of SetStatusBar (TRUE)
this.inv_statusbar.of SetTimer (TRUE)

This script enables the sheet management service, which provides the
ability to minimize all sheets and undo the last sheet arrange command. It
also enablesthe status bar service, displaying date and time informationin
the bottom-right corner of the frame.

Select pfc_PostOpen from the second drop-down list in the Script view
and type these lines:

Integer 1li return
String ls _inifile

ls inifile = gnv_app.of GetAppIniFile()

IF SQLCA.of Init(ls inifile,"Database") = -1 THEN
MessageBox ("Database", &
"Error initializing from " + 1ls_inifile)
HALT CLOSE
END IF
IF SQLCA.of Connect() = -1 THEN
MessageBox ("Database", &
"Unable to connect using " + 1ls inifile)
HALT CLOSE
ELSE
this.SetMicroHelp ("Connection complete")
END IF

PowerBuilder

Lesson 2 Create the Frame Window

PFC Library User’s Guide

This script accesses database connection parameters with the transaction
service (n_tr) of_Init function and connects with the transaction service
of Connect function. If these functions succeed, the script displays a
message in the status bar.

Extending the ancestor script o
The purpleicon in front of the pfc_postopen event indicates that an

ancestor window isscripted for thisevent. By default, eventsare extended:
script is processed first from ancestor objects, then from descendent
objects. You can examine this script by selecting pfc_w_frame from the
third drop-down list in the Script view.

Select File>Save from the menu bar.

The Save Window dialog box displays.

Make sure my_pfc_app.pbl is selected in the Application Libraries list
box.

Type w_tut_frame in the Windows box.

Type the following comment in the Comments box:

Frame window for the PFC tutorial application.

Click OK.
Select File>Close from the menu bar.

PowerBuilder saves the window and you close the Window painter.

251

Add script to open the frame window

Add script to open the frame window

252

Where you are

Create a descendent frame window

Define pre- and post-open processing
> Add script to open the frame window

Run the application

Now you will add code to the application manager pfc_Open event to open the
frame window.

1 Click the Open button in the PowerBar.
Select my_pfc_app.pbl in the Libraries list box.
Select User Objects in the Objects of Type drop-down list.

Then_cst_tutappmanager user object isthe only user object inthislibrary.
It is selected in the Object list box.

2 Click OK.
The User Object painter workspace displays.

3 Make sure n_cst_tutappmanager displays in the first drop-down list in
the Script view.
Select pfc_Open from the second drop-down list.
Type these lines for the pfc_Open script:

this.of splash (1)
Open (w_tut frame)

Thefirst line opensthe PFC splash screen. The second line opensthe MDI
framewindow for the application. The splash screen will stay openfor one
second after then_cst_tutappmanager establishesthe database connection.

4 Select File>Save from the menu bar.

PowerBuilder saves the script changes.

5 Select File>Close from the menu bar.

The User Object painter closes.

PowerBuilder

Lesson 2 Create the Frame Window

Run the application

Where you are

Create a descendent frame window

Define pre- and post-open processing

Add script to open the frame window
> Run the application

1 Click the Run or the Select And Run button in the PowerBar.
Make sure the my_pfc_app target is selected and click OK.

The splash window displays and the database connection is established.
The splash window usesinformation you entered for instance variables of
the n_cst_tutappmanager user object:

dn,

pfc 7.0

FFC tutorial application

If there is a database connection error, you may need to modify the
pfctutor.ini file to specify a valid data source for EAS Demo DB V3.

PFC Library User’s Guide 253

Run the application

The MDI frame window displays behind the splash window and remains
open after the splash window closes.

+ PFC Tutorial Frame =] E3
File Help

| Connection complete

&

2 Select File>Exit from the menu bar.

The application closes.

254 PowerBuilder

LESSON 3

PFC Library User’s Guide

Create Menus

In PFC applications, all menus typically inherit from m_master (or an
m_master descendant) and add, modify, and hide items as needed. The
m_master ancestor menu provides items for use with all PFC windows,
Datawindows, and visual controls.

Menu usage
Thistutorial uses one approach to menu implementation. PFC allowsyou

to implement other approaches, include modifying m_master directly and
defining menus from scratch.

In this lesson you will:

e Create a descendent menu

¢ Add and modify items

e Create aframe menu

* Associate the frame window with a menu

e Create amenu for thew_products sheset

e Create amenu for thew_product_report sheet

How long will this lesson take?
About 40 minutes.

What will you learn about PFC?
* How to create a customized descendant of m_master

« How to open a sheet, passing the window namein
M essage. StringParm

255

Create a descendent menu

Create a descendent menu

256

Where you are

> Create a descendent menu
Add and modify items
Create a frame menu
Associate the frame window with a menu
Create a menu for the w_products sheet
Create a menu for the w_product_report sheet

Now you will create a master menu for the tutorial by inheriting from the
m_master menu.

1 Click the Inherit button in the PowerBar.
The Inherit From Object dialog box displays.

2 Select pfewnsrv.pblin the Libraries list box.
Select Menus in the Objects of Type drop-down list.
Select m_master and click OK.

The Menu painter workspace displays.

3 Select File>Save As from the menu bar.

The Save Menu dialog box displays.

4 Select my_pfc_app.pblin the Application Libraries list box.
Type m_tut_master in the Menus box.
Type the following comment in the Comments box:

Menu ancestor for tutorial frame and sheet menus.

5 Click OK.

PowerBuilder saves the menu.

PowerBuilder

Lesson 3 Create Menus

Add and modify items

PFC Library User’s Guide

Where you are
Create a descendent menu

> Add and modify items
Create a frame menu
Associate the frame window with a menu
Create a menu for the w_products sheet
Create a menu for the w_product_report sheet

Now you will add and modify menu items on m_tut_master. You will use the
Script, WY SIWY G, and Properties views of the Menu painter to make these
changes.

Modifying m_master directly
The PFC tutorial creates an m_master descendant, which you modify for use

as amaster menu. In most applications you can make these modifications to
m_master, eliminating alayer of inheritance.

1 Select m_file.m_open in the first drop-down list in the Script view.

Thisisthe m_master (and m_tut_master) name for the File>Open menu
item.

2 Select the Clicked event in the second drop-down list in the Script

view.

Thepurpleiconinfront of the event name indicatesthat the Clicked event
in an ancestor menu is scripted. By default, events are extended: script is
processed first from ancestor objects, then from descendent objects.

3 Select Edit>Extend Ancestor Script in the PowerBuilder menu bar.

You clear the checkmark in front of the Extend Ancestor Script menuitem.
Thiswill allow you to open a submenu with the application File>Open
menu command without processing the ancestor script for the Clicked
event of the Open menu item.

4 Typethis comment in the Script view:

// File->Open script override.

257

Add and modify items

258

Click the File menu in the WYSIWYG view.
Right-click the Open menu item below the File menu.
Select Insert Submenu Item from the pop-up menu.

An empty box displays next to Open menu item. The cursor flashesinside
the box, prompting you to define a submenu item for File>Open.

Type &Product List in the empty box and press ENTER.

The ampersand (&) converts the character that follows it to a menu hot
key. After you presseNTER, the Product List menuiteminthe WY SIWY G
view appears asit will at runtime; with an underscore under the P, and
without the ampersand.

Inthe Text box inthe Propertiesview, the ampersand is not replaced by the
underscore. The Name box in the Properties view displaysthe normalized
menu name: m_productlist.

Using the Properties view to enter the item text))
If you click away from the WY SIWY G view before typing the menu item

name, the box for the name will be blackened and you will not be able to
modify it. Inthis case, clear the Lock Name box in the Propertiesview and
type & Product List in the Text box in the Propertiesview. Thevaluein the
Name box will be changed automatically when you click elsewherein the
painter.

Properties - m_productlist inherited... B3
| File Edit Miew |nset Tools Window Help General | Toolbarl
Hew
|| — v [{ame
Close |m_pr0duc:t|ist
¥ Lock Mame
Save Chil+5 Text
Save s |&Pr0duct List
- MicroHelp
Eirt... Cirl+P |
Frint Preview Tag
Page Set |
P ¥ Wisible
¥ Enabled
[~ Checked
I~ Default
Eell [~ ShiftTaRight
Mergelption
Iexclude!
MenultemT ype
I menuitemtypenormal
m Shortcut Key

PowerBuilder

Lesson 3 Create Menus

PFC Library User’s Guide

10

11

12

Type Product list for the MicroHelp box in the Properties view.
Double-click Product List in the WYSIWYG view.

The Script view displays m_filem_open.m_productlist in the first
drop-down list. When you created the Product List menu item,
PowerBuilder added it to the list.

Make sure the Clicked event is selected in the second drop-down list
in the Script view.
Type these lines:

Message.StringParm = "w_products"
of SendMessage ("pfc Open")

These lines initialize the StringParm value and call the of _SendM essage
menu function, which then callsthe pfc_Open event on the frame window.

Menu service
You can aso call the n_cst_menu of _SendM essage function to perform

this functionality.

Right-click the Product List menu item in the WYSIWYG view.
Select Insert Menu Item At End from the pop-up menu.

An empty box displays below the Product List menu item.

Type Product &Sales Report for the new menu item and click ENTER.
Type Product sales report in the MicroHelp in the Properties view.
Double-click Product Sales Report in the WYSIWYG view.

The Script view displaysm_filem_open.m_productsal esreport in thefirst
drop-down list.

Make sure the Clicked event is selected in the second drop-down list.
Type the following lines:

Message.StringParm = "w_product report"
of SendMessage ("pfc_ Open")

These lines initiaize the StringParm value and call the of _SendM essage
menu function, which then callsthe pfc_Open event on the frame window.

Click the File>New menu item in the WYSIWYG view.

The Properties view displays properties of the m_new menu.

259

Add and modify items

260

13

14

15

Clear the Visible check box on the General page of the Properties view.
Select the Toolbar tab of the Properties view.
Clear the ToolbarltemVisible check box on the Toolbar page.

Since you will not be adding code to the File>New menu Clicked event in
the tutorial application, you make the menu item and its toolbar picture
invisible at runtime.

In the previous lesson you made a selection to prevent the display of a
toolbar for the application frame window. But the user can still opt to
display aframe menu toolbar from an application that uses PFC window
services. Now you ensure that even if the user makes this selection, the
File>New toolbar picture will not be displayed.

Dithered appearance in WYSIWYG view
Menu items that will not be visible at runtime are displayed in a dithered

format in the WY SIWY G view. Even though the menu item will not be
visible, if its property sheet showsatoolbar picturefor the menuitem, you
must clear thevisible button on the toolbar page, or the toolbar picturewill
be displayed (or displayable by user selection) at runtime.

Click the Insert menu bar item in the WYSIWYG view.
Clear the Visible check box on the General page of the Properties view.

Menu items under the Insert menu will not be selectable at runtime, even
though their Visible property is set to TRUE.

Hide menu items and toolbar pictures as follows:

Menu | Menu item Hide item Hide toolbar picture
File New Yes (done) Yes (done)
Open No Yes
Save As Yes Not visible by default
Edit Paste Specia Yes No picture to hide
m_dash23 (separator Yes No picture to hide
line below Select All)
Find Yes Yes
Replace Yes Yes
m_dash24 (separator Yes No picture to hide
line below Replace)
Update Links Yes No picture to hide
Object Yes No picture to hide

PowerBuilder

Lesson 3 Create Menus

PFC Library User’s Guide

16

Menu | Menu item Hide item Hide toolbar picture
View Ruler Yes No picture to hide
m_dash31 (separator Yes No picture to hide
line below Ruler)
Filter Yes No picture to hide

Hiding the items and toolbars separately)
It may be quicker to go down the list once to hide the menu items and a

second time to hide the toolbars. This way you avoid clicking back and
forth between the General page and the Toolbar page of the Properties

view.

Click the Save button in PainterBarl.
Click the Close button in PainterBarl.

PowerBuilder saves the updated menu.

261

Create a frame menu

Create a frame menu

262

Where you are
Create a descendent menu
Add and modify items

> Create a frame menu
Associate the frame window with a menu
Create a menu for the w_products sheet
Create a menu for the w_product_report sheet

Now you will create aframe menu by inheriting from the m_tut_master menu.
The main portion of this exercise is hiding menus and menu items that don’t
apply when only the frame is displayed.

1 Click the Inherit button in the PowerBar.
The Inherit From Object dialog box displays.

2 Make sure my_pfc_app.pbl is selected in the Libraries list box.
Make sure Menus is selected in the Objects of Type drop-down list.
Select m_tut_master in the Object list box and click OK.

The Menu painter workspace displays.

3 Click the Save button in PainterBarl.

The Save Menu dialog box displays.

4 Type m_tut_frame in the Menus box.
Type the following comment in the Comments box and click OK:

Frame menu for PFC tutorial application.

PowerBuilder saves the menu and displays the Menu painter workspace.

5 Using the WYSIWYG view and the Properties view, hide the following
menu bar items: Edit menu, View menu, and Tools menu.

The frame menu bar for the tutorial application will only show the File,
Window, and Help menus.

PowerBuilder

Lesson 3 Create Menus

PFC Library User’s Guide

6

Hide menu items and toolbar button pictures as follows:

Menu | Menu item Hide item Hide toolbar picture
File Close Yes Not visible by default
Save Yes Yes
m_dash12 Yes No pictureto hide
(separator line
below Save As)
Print Yes No pictureto hide
Print Preview Yes Yes
Print Immediate Hiddenin ancestor | Yes
Edit Undo Not necessary, Yes
Edit menu hidden
Cut Not necessary, Yes
Edit menu hidden
Copy Not necessary, Yes
Edit menu hidden
Paste Not necessary, Yes
Edit menu hidden
Clear Not necessary, Not visible by default

Edit menu hidden

Select File>Save from the menu bar.

PowerBuilder saves the updated menu.

Select File>Close from the menu bar.

The Menu painter closes.

263

Associate the frame window with a menu

Associate the frame window with a menu

264

Where you are
Create a descendent menu
Add and modify items
Create a frame menu

> Associate the frame window with a menu
Create a menu for the w_products sheet
Create a menu for the w_product_report sheet

Now you will associate the frame window with m_tut_frame, the frame menu
you just created.

1 Click the Open button in the PowerBar.
The Open dialog box displays.
2 Select my_pfc_app.pblin the Libraries list box.

Select Windows in the Objects of Type drop-down list.
Select w_tut_frame in the Object list box and click OK.

The Window painter workspace displays.

3 Click the ellipsis button next to the MenuName box in the Properties
view.

The Select Object dialog box displays:

4 Select m_tut_frame and click OK.

The Window property sheet displays with the selected menu.

5 Select File>Save from the menu bar.

PowerBuilder saves the updated window.

6 Select File>Close from the menu bar.

The Window painter closes.

PowerBuilder

Lesson 3 Create Menus

Create a menu for the w_products sheet

PFC Library User’s Guide

Where you are

Create a descendent menu
Add and modify items
Create a frame menu

Associate the frame window with a menu
> Create a menu for the w_products sheet
Create a menu for the w_product_report sheet

Now you will create a sheet menu by inheriting from m_tut_master, the PFC
tutorial master menu.

1

4

Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

Select my_pfc_app.pblin the Libraries list box.
Select Menus in the Objects of Type drop-down list.
Select m_tut_master and click OK.

The Menu painter workspace displays. You will leave the Edit, View, and
Tools menus visible for the sheet menu.

Hide menu items and toolbars as follows:

Menu Menu item Hide item Hide toolbar picture
File Print Yes No picture to hide
Print Preview Yes Yes
View m_dash35 (separator Yes No pictureto hide
line below Last)
m_dash36 (separator Yes No pictureto hide
line below Filter)
Zoom Yes No pictureto hide

Select File>Save As from the menu bar.

The Save Menu dialog box displays.

265

Create a menu for the w_products sheet

5 Type m_products in the Menus box.
Type the following line in the Comments box and click OK:

Sheet menu for w_products window.

PowerBuilder saves your new menu as a descendant of m_tut_master.

266 PowerBuilder

Lesson 3 Create Menus

Create a menu for the w_product_report sheet

Where you are

Create a descendent menu

Add and modify items

Create a frame menu

Associate the frame window with a menu
Create a menu for the w_products sheet

> Create a menu for the w_product_report sheet

Now you will create a sheet menu for w_product_report by inheriting from
m_tut_master (the PFC tutorial master menu).

1

PFC Library User’s Guide

Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

Select my_pfc_app.pblin the Libraries list box.
Select Menus in the Objects of Type drop-down list.
Select m_tut_master and click OK.

The Menu painter workspace displays.

Hide the Edit menu bar item.

You will prevent the user from modifying the product reports or updating
the database at runtime.

Hide menu items and toolbar pictures as follows:

Menu Menu item Hide item Hide toolbar picture
File Save Yes Yes
m_dash12 (separator | Yes No pictureto hide
line below Save As)
Edit Undo Not necessary, Yes
Edit menu hidden
Cut Not necessary, Yes
Edit menu hidden
Copy Not necessary, Yes
Edit menu hidden
Paste Not necessary, Yes
Edit menu hidden

267

Create a menu for the w_product_report sheet

268

Menu Menu item Hide item Hide toolbar picture
Clear Not necessary, Not visible by default
Edit menu hidden
View Sort Yes No picture to hide
m_dash36 (separator | Yes No picture to hide

line below Filter)

Select File>Save As from the menu bar.

The Save Menu dialog box displays.

Type m_product_report in the Menus box.
Type the following line in the Comments box and click OK.

Sheet menu for w_products report window.

PowerBuilder saves your new menu as a descendant of m_tut_master.

Close the Menu painter.

PowerBuilder

LESSON 4 Build the First Sheet Window

You inherit from PFC'sw_sheet window to create MDI sheets.

In this lesson you will:

Add alibrary to the library list
Create a descendent window
Add a Datawindow control
Enable Datawindow services
Retrieve rows

Run the application

How long will this lesson take?
About 30 minutes.

What will you learn about PFC?

How to create a descendant of the w_sheet window

How to enable the DataWindow property, row selection, and row
management services

How to use the u_dw Datawindow control

How to add database access and update functionality to u_dw user
events

PFC Library User’s Guide

269

Add a library to the library list

Add alibrary to the library list

Where you are

> Add a library to the library list
Create a descendent window
Add a DataWindow control
Enable DataWindow services
Retrieve rows
Run the application

You will now add alibrary to the application target library list. Thelibrary you
will add contains DataWindow objects created for this tutorial.

1 Right-click the my_pfc_app target on the Workspace page of the
System Tree.
Select Properties from the pop-up menu.

TheLibrary List page of the Propertiesdialog box displaysall thelibraries
in the target search path.

2 Click the Browse button.
Navigate to the PFC\Tutorial directory.
Select pfctutor.pbl from the directory file list and click Open.

The pfctutor.pbl library appears at the bottom of the Library Search Path
list box.

3 Click OK.

270 PowerBuilder

Lesson 4 Build the First Sheet Window

Create a descendent window

Where you are

Add a library to the library list
> Create a descendent window

Add a DataWindow control

Enable DataWindow services

Retrieve rows

Run the application

Now you will create a sheet window by inheriting from the w_sheet window.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Select pfemain.pbl in the Libraries list box.
Select Windows in the Objects of Type drop-down list.
Select w_sheet in the Object list box and click OK.

The Window painter workspace displays.

3 Type Product List in the Title box in the Properties view.

This defines atitle for the sheet window.

4 Click the ellipsis button next to the MenuName box.

The Select Object dialog box displays.

5 Select pfc_my_app.pbl in the Application Libraries list box.
Select m_products and click OK.

The Window painter redisplays with the MenuName box filled in.

6 Select File>Save As from the menu bar.

The Save Window dialog box displays. The pfc_my_app.pbl fileis
selected in the Application Libraries list box.

7 Type w_products in the Windows box.

Type the following line in the Comments box and click OK:

Sheet window for product list.

PFC Library User’s Guide 271

Add a DataWindow control

Add a DataWindow control

Where you are

Add a library to the library list

Create a descendent window
> Add a DataWindow control

Enable DataWindow services

Retrieve rows

Run the application

Now you will add a Datawindow control to the w_products window. This
Datawindow control is based on PFC's u_dw DataWindow user object.

1 Select and click the UserObj button in PainterBarl (not the PowerBar).
or
Select Insert>Control>UserObject from the menu bar.

If you don’t see the UserObj button
To click the UserObj button, you first need to select the UserObj icon from

adrop-down list of control buttons in PainterBarl (this button typically
displays a command button when the Window painter opens).

The Select Object dialog box displays.

2 Select pfemain.pbl in the Application Libraries list box.
Select u_dw in the User Objects list box and click OK.

U_dw isastandard visual user object based on a Datawindow control that
includes precoded events, instance variables, and functions to enable and
disable PFC DataWindow services.

3 Click in the upper-left corner of the window in the Layout view.

272 PowerBuilder

Lesson 4 Build the First Sheet Window

PowerBuilder places a Datawindow control at the selected location. This
Datawindow control isadescendant of u_dw, with accessto u_dw events,
functions, and instance variables:

= Window - w_products inherited from w_sheet M=l E3

4 Select the text dw_1 in the Name box of the Properties view.
Type dw_list in the Name box.

Make sure the new control is selected
If you do not see the name dw_1 in the Name box, click the control you

just added in the Layout view. When the control is selected in the Layout
view, it is also selected in the Properties view.

5 Click the ellipsis button next to the DataObject box in the Properties
view.

The Select Object dialog box displays.
6 Select pfctutor.pbl in the Application Libraries list box.
Select d_prodlist in the DataWindows list box and click OK.

The Datawindow painter redisplays.

PFC Library User’s Guide 273

Add a DataWindow control

7 Make the control almost as big as the window in the Layout view,
maximizing the Layout view if necessary:

8 Select File>Save from the menu bar.

PowerBuilder saves the updated window.

274 PowerBuilder

Lesson 4 Build the First Sheet Window

Enable DataWindow services

PFC Library User’s Guide

Where you are
Add a library to the library list
Create a descendent window
Add a DataWindow control

> Enable DataWindow services
Retrieve rows
Run the application

Now you will use the Script view of the Window painter to add PowerScript
code to the Datawindow control. The script you will add calls functionsto
enable PFC DataWindow sort, row selection, and row management services.

Select dw_list from the first drop-down list in the Script view.
Select the Constructor event from the second drop-down list.

The third drop-down list in the Script view displays the parent window
name, w_products. There is no code yet for the user object Constructor
event, either in the current object or in the u_dw and pfc_u_dw ancestor
objects.

Type the following script for the Constructor event:

this.of SetRowSelect (TRUE)
this.of SetRowManager (TRUE)
this.of SetSort (TRUE)

this.of SetProperty (TRUE)
this.of SetTransObject (SQLCA)

These lines enabl e the property, row selection, row management, and sort
services for the DatawWindow. They also set the Transaction object for the
Datawindow.

Using drag and drop from the System Tree
You can drag and drop methods and properties from the System Treeto the

Script view. When you drag and drop afunction such asof _SetRowSel ect,
PowerBuilder adds commentsthat serve as placeholders and give the data
types for any arguments of the function.

275

Enable DataWindow services

3

276

Add the following script after the lines you just typed:

this.inv rowselect.of SetStyle &
(dw_list.inv_rowselect .EXTENDED)
this.inv_sort.of_ SetStyle &
(dw_list.inv_sort.DRAGDROP)
this.inv_sort.of SetColumnHeader (TRUE)

These linesinitialize the row selection and sort services.

The row selection service of _SetStyle function enables extended row
selection with the CTRL and sHIFT keys. The sort service of SetStyle
functioninstructs PFC to display adrag-and-drop sort dial og box when the
user selects View>Sort from the menu bar.

The sort service of _SetColumnHeader function enables sorting by
clicking on column headers, afeature found in many current applications.

Add the following script after the lines you just typed:

IF this.of Retrieve() = -1 THEN

SQLCA.of Rollback()

MessageBox ("Error", "Retrieve error")
ELSE

SQLCA.of Commit ()

this.SetFocus ()
END IF

These lines call the of_Retrieve function for the user object. Since this
function is not coded in the u_dw control, PowerBuilder will parse the
code for the same function in the pfc_u_dw ancestor.

Script - constructor for dw_list inherited from u_dw returns long
Idw list 'l I. constructor [] returns long [pbm_constructor] ”w products 'l@l@l

this.of_SetRowSelect{TRUE)
this.of_SetRowHManager{TRUE)
this.of_SetSort{TRUE)
this.of_SetProperty(TRUE)
this.of_SetTransObject{SQLCA)

this.inv_rowselect.of_SetStyle &
(dw_list.inv_rowselect .EXTENDED)

this.inv_sort.of_SetStyle &
(dw_list.inv_sort.DRAGDROP)

this.inv_sort.of_SetColumnHeader{TRUE)

IF this.of_Retrieve() = -1 THEHN
SQLCA.of_Rollback(}
MessageBox("Error","Retrieve error")

ELSE
SQLCA.of_Commit()
this.SetFocus()

EHD IF

PowerBuilder

Lesson 4 Build the First Sheet Window

5 Click the Compile button in PainterBar2.

PowerBuilder compiles the script you typed for the dw_list Constructor
event.

PFC Library User’s Guide 277

Retrieve rows

Retrieve rows

Where you are

Add a library to the library list

Create a descendent window

Add a DataWindow control

Enable DataWindow services
> Retrieve rows

Run the application

Now you will add PowerScript code that retrieves rows from the database. In
the last exercise, the call you made to the of _Retrieve function triggers the
pfc_Retrieve event when the PFC Linkage service is not running. (You do not
start the Linkage service in the tutorial application.)

Since events are extended by default, PowerBuilder parses the event script in
both the pfc_u_dw ancestor, and then in the current u_dw control.

1 Select pfc_Retrieve from the second drop-down list in the Script view.

Thereisaready script for thisevent in the pfc_u_dw ancestor contral.
Now you will add code to extend the ancestor script.

2 Type this script:
Return this.Retrieve()

This line returns the Retrieve function return value, which gives the
number of rowsin the primary buffer if the retrieve is successful.

3 Select File>Save from the menu bar.

PowerBuilder compiles the script and saves the window.

4 Select File>Close from the menu bar.

The Window painter closes.

278 PowerBuilder

Lesson 4 Build the First Sheet Window

Run the application

Where you are
Add a library to the library list
Create a descendent window
Add a DataWindow control
Enable DataWindow services
Retrieve rows

> Run the application

Now you will make sure the sheet window opens properly by running the PFC
tutorial application.

1 Click the Run button in the PowerBar.

The application connects to the database and displays the PFC tutorial
frame window. Only the File, Windows, and Help menus arevisiblein the
MDI frame menu bar.

+ PFC Tutorial Frame =] E3
File ‘Window Help

| Connection complete

&

2 Select File>Open>Product List from the menu bar.

PFC Library User’s Guide 279

Run the application

The w_products window displays:

i PFC Tutorial Frame M= &=
File Edit “iew Toolz ‘Window Help
8 &8 sm@ o
i Product List M= 3
F'rolguct Product Mame Product Description Unit Price
Tank Top $9.00
Tee Shirt Weneck $14.00
Tee Shirt Crew MNeck $14.00
Baseball Cap Cotton Cap $9.00
Baseball Cap YWool cap $10.00
Wisor Cloth isar §7.00
Wisor Plastic Visor §7.00
Sweatshirt Hooded Sweatshirt $24.00
Sweatshirt Zipped Sweatshirt $24.00
Shorts Cotton Shorts $15.00
|Ready 4

3 Select multiple rows by holding the CTRL or SHIFT key down while
clicking before the first column in the rows you want to select.
Sort rows by clicking in the column headers.
Click the same column header twice to change the order of the sort.

You test the PFC selection and sort services.

Selecting multiple rows
You must click in front of the rowsyou want to sel ect—clicking inside the

rows does not select them.

4 Click the right mouse button over one of the columns in the
Datawindow.

280 PowerBuilder

Lesson 4 Build the First Sheet Window

The Datawindow displays a pop-up menu, providing quick accessto
common actions:

i Product List M= 3
Product Product Mame Product Description Unit Price
D
B00 Sweatshirt Hooded Sweatshirt $24.00
B01 Sweatshirt Zipped Sweatshirt $24.00

Shorts Cotton Shorts $15.00

K £14.00
301 Tee Shirt Weneck

but 4.00
Copy
401 Baseball Cap Wyool ce Paste 0.00
300 Tee Shirt Tank To SelectAll 59.00
400 Baseball Cap Cottan U |ngert S.00
501 Wisor Plastic® Add 7.00
500 Visor Clothvi 2ot 7.00
Frestare..
Drataiwfindow Properties...

5 Select DataWindow Properties.

The Datawindow Properties dialog box displays. You can enable or
disable DataWindow services from this dial og box, and you can modify
the properties of services that are enabled.

Datawindow Properties - d_prodlist

Buffers | StatusFlags |

The following Services are accessible:

Enable | Wizatile Braperty |

Drescription:
Provides D atawindows and Edittask numeric <
fields with a Calculator functionality.

v

ok | bep |

6 Click the Calculator check box in the list of DataWindow services.
Click the Property button.

PFC Library User’s Guide 281

Run the application

282

If the Property button is grayed
The Property button is only enabled (not grayed) if the selected

Datawindow service is enabled.

The Calculator Properties dialog box displays. The 2 columns that have
numeric datatypes (id and unit_price) arelisted on the General page of the
Calculator Properties dialog box.

Select the Register check box for the unit_price column.
Select DDLB With Arrow from the drop-down list for the unit_price
column.

Calculator Properties [%]
General | syntagl

I~ Set Initial value when none available
¥ Close on click

Column Register Style -
idl HONE =
unit_price v [DDLE Wilrrow | =

g

QK I Cancel | Help |

Click the Syntax tab.

The Syntax page displaysthe PowerScript code that setsthe propertiesyou
just selected.

Click OK twice.

You can now use a drop-down calculator in the Unit Price column to
change column values.

Displaying the modified column values
The values entered with the drop-down cal culator (or from the keyboard)

will display with the appropriate column display formats—in this case,
with adollar sign and two decimal places—when the user clicksin a
different row or column.

PowerBuilder

You can try enabling other DataWindow services and changing their
properties.

10 Select File>Exit from the menu bar.

The runtime application closes.

PFC Library User’s Guide 283

Run the application

284 PowerBuilder

LESSON 5 Build the Second Sheet Window

You inherit from PFC'sw_sheet window to create a second MDI sheet
window.

In this lesson you will:

e Create a descendent window

e Add aDatawindow control

« Enablereport and print preview services

¢ Run the application

How long will this lesson take?
About 10 minutes.

PFC Library User’s Guide 285

Create a descendent window

Create a descendent window

286

Where you are
> Create a descendent window
Add a Datawindow control
Enable report and print preview services
Run the application

Now you will create a sheet window by inheriting from the w_sheet window.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Click pfemain.pblin the Libraries list box.
Select Windows from the Objects of Type drop-down list.
Select w_sheet from the Object list box and click OK.

The Window painter workspace displays.

3 Type Product Sales Report in the Title box in the Properties view.

This defines atitle for the new sheet window.

4 Click the ellipsis button next to the MenuName box in the Properties
view.

The Select Object dialog box displays.

5 Select my_pfc_app.pblin the Application Libraries list box.
Select m_product_report in the Menus list box and click OK.

The Window property sheet redisplayswith the Menu Namefieldfilled in.

6 Select File>Save As from the menu bar.

The Save Window dialog box displays.
7 Type w_product_report in the Windows box.

Type the following line in the Comments box and click OK.

This is the report sheet for the PFC tutorial.

PowerBuilder

Lesson 5 Build the Second Sheet Window

Add a DataWindow control

PFC Library User’s Guide

Where you are
Create a descendent window
> Add a DataWindow control
Enable report and print preview services
Run the application

Now you will create a Datawindow control using PFC's u_dw Datawindow
user object.

Select and click the UserObj button in PainterBarl (not the PowerBar).
or
Select Insert>Control>UserObject from the menu bar.

The Select User Object dialog box displays.

Select pfemain.pbl in the Application Libraries list box.
Select u_dw in the User Objects list box and click OK.
Click in the upper-left corner of the window in the Layout view.

PowerBuilder places a Datawindow control at the selected location. This
Datawindow control isadescendant of u_dw, with accessto u_dw events,
functions, and instance variables.

Select the text dw_1 in the Name box in the Properties view.
Type dw_report in the Name box.
Select the HScrollBar check box.

You add a horizontal scroll bar to the Datawindow that will be visible at
runtime.

Click the ellipsis button next to the DataObject box.
The Select Object dialog box displays.

Select pfctutor.pbl in the Application Libraries list box.
Select d_sales_report in the DataWindows list box and click OK.

The DatawWindow property sheet redisplayswith the DataObject box filled
in.

287

Add a DataWindow control

6 Make the control almost as big as the window in the Layout view,
maximizing the Layout view if necessary:

=/ Window - w_product_report inherited from w_sheet

AI
: Product Sales Summa :
: v Sales €
Product Product Product Quantity
11} Hame Description Sold Dollars
o
] |
Do
.
-
Kim| H

7 Select File>Save from the menu bar.

288 PowerBuilder

Lesson 5 Build the Second Sheet Window

Enable report and print preview services

PFC Library User’s Guide

Where you are
Create a descendent window
Add a DataWindow control
> Enable report and print preview services
Run the application

Now you will add PowerScript code to call functions that enable the PFC
Datawindow report service and print preview service. You will also add code
that retrieves rows from the database.

1 Select dw_report from the first drop-down list in the Script view.
Select the Constructor event from the second drop-down list.
Type the following script for the Constructor event:

this.of SetReport (TRUE)

this.of SetPrintPreview (TRUE)
this.of SetTransObject (SQLCA)
this.of SetUpdateable (FALSE)

Theselines enablethereport and print preview services, set SQLCA asthe
Transaction object and register the DatawWindow as nonupdatable. In a
nonupdatable DataWindow, PFC disregards default CloseQuery
processing.

2 Add the following script after the lines you just typed:

IF this.of Retrieve() = -1 THEN

SQLCA.of Rollback ()

MessageBox ("Error", "Retrieve error")
ELSE

SQLCA.of Commit ()
END IF

These lines call theu_dw of Retrieve event for the DatawWindow.
Precoded report service events and functions handle all other processing.

3 Select pfc_Retrieve from the second drop-down list in the Script view.

PowerBuilder compiles the script for the Constructor event.

289

Enable report and print preview services

4 Type this script for the pfc_Retrieve event:

Return this.Retrieve()

5 Select File>Save from the menu bar.

PowerBuilder compiles the script and saves the window.

6 Select File>Close from the menu bar.

The Window painter closes.

290

PowerBuilder

Lesson 5 Build the Second Sheet Window

Run the application

PFC Library User’s Guide

Where you are

Create a descendent window

Add a DataWindow control

Enable report and print preview services
> Run the application

Now you will run the completed PFC tutorial application.

1 Click the Run button in the PowerBar.

The application connects to the database and displays the PFC Tutorial
Frame window.

2 Select File>Open>Product Sales Report from the menu bar.

Thew_product_report window displays:

i PFC Tutorial Frame M= 3
File “iew Toolz ‘Window Help
"= =]
i Product 5Sales Report M= 3
Product Sales S =
roduct Sales Summa
v Sales
Product Product Product Quantity " .

11} Hame Description Sold Dollars Zipped Sweatshit
Mool cap

300 Tee Shirt Tank Top 2364 §21.276
Wened:
301 Tee Shirt “-neck 2388 §I34E2 Tark Top
302 Tee Shirt Crewy Meck 2145 §30,072 Plastic Visar
400 Baseball Cap Cotton Cap 3278 $29.502 Hooded Suwe atshirt
401 Baseball Cap Wool cap 701 §27.010 Crewu Hedk
Cotton Shorts

200 Wisor Cloth Yisor 2652 §18,564
Cotton Cap
S01 Wisor Plastic Wisor 2508 $17 556 Cloth Wisor

BO0 Swestshirt Hooded Swestshirt 3060 §73,440 P
B0 Swestshirt Tipped Sweatshit 2724 §65,376

|Ready

&

3 Click the Print Preview button in the toolbar.

or

Select File>Print Preview from the menu bar.

291

Run the application

292

The print preview shows the printable area inside a blue box. You may
need to scroll or zoom the preview window to see the entire report.

Select View>Zoom from the menu bar.

The Zoom dialog box displays.

If the Zoom dialog box does not display
You must be in the Print Preview mode to display the Zoom dialog box.

Change the Zoom dialog box setting to display the entire report and
click OK.
Print the report if wanted.

Select File>Exit from the menu bar.

The application closes and the Window painter workspace displays.

Close the Window painter.

You have completed this tutorial. Before deploying a simple application
like the one you created here, you would probably want to add your own
Help file, edit the About box, and enable additional PFC services.

For more information on PFC functions and events, see the PFC Object
Reference.

Using the Online Books
All the PowerBuilder books are availablein the Technical Library CD and

on the Sybase Web site at www.sybase.com.

PowerBuilder

Index

A

aggregate relationship 11
ancestor level

contents 12,15

interdependencies 20
ancestor override (tutorial example) 257
application manager

customizing descendant 237

gnv_app global variable 241

logon dialog box 32

services 31,49

settingup 29

splash screen 31
Application object

creation 233

redirecting eventsfrom 241

using separate physical files 20
application services

application preference 53

Datawindow caching 50

debugging 52

error message 57

list 49

most recently used object 54

security 60

transaction registration 62
associativerelationship 11
autorollback 44, 62
autoscroll, enabling 133
autoselect, enabling 133

B

base-10, converting to binary 104
binary, converting to base-10 104
bits, accessing 104

PFC Library User’s Guide

buffers
Datawindow caching service 50
Datawindow properties service 208

C

caching DataWindow objects, application service
calculator control 169

calendar control 174

class user objects, cussom 5

components 15

composite DatawWindow 80

conversion service 98

copy 131

custom class user objects 5

custom visual user objects 5, 129

cut 131

D

database
connecting 250
retrieving 137
security 224
updating 92

Datawindow caching, application service 50
Datawindow control
creating (tutorial) 272, 287
retrieving 137
SQL Spy 210
usingu dw 135
Datawindow object
accessing object information 65
caching 50
Datawindow Propertieswindow 207

50

293

Index

DatawWindow services
accessing 63
base 64
Datawindow properties 76, 207, 275
DataWindow resize 85
drop-down DataWindow search 67
filter 67
find and replace 70
linkage 71
list 64
multitable update 74
print preview 75
query mode 77
reporting 78
required column 81
row management 82
row selection 84
sort 87
tutorial usage 275, 289
date/time service 99
debugging service
SQL Spy 210
usage 52
delegation
aggregaterelationship 11
associativerelationship 11
deployment
PBRfiles 229
PFC database tables 229
PFC dialog box Help 230
strategy 227
dialog box Help 230
drop-down DataWindow
refreshing 66
search service 67
drop-down list box, autoscroll 133

E

editing 131

encapsulation 7

error message service

e-mail notification 59

symbolic parameter replacement 60
usage 57

294

events
ancestor override (tutorial example) 257
comparison with functions 6
using 36
extended selection, row selection service 84
extending PFC
creating additional extension levels 20
Library Extender 226
using PFE to contain extensions 23
extension level
overview 12
sample scenario 14
strategy 20

F

fileservice 101
filter service 67
find and replace service 70
frame menu, tutorial example 255, 262
frame window
associating withamenu 264
menu (tutorial) 255
modifying 247

opening 252
functions
caling 35

comparison with events 6
overloading 8

overriding 8

overview 6

G

global variable, defining 241

gnv_app
defining 30
tutorial definition 241

PowerBuilder

H

Help
dialog box Help 230
enabling, for an application 46

inclusional polymorphism 8
inheritance 7
INI fileservice 102
INI files

INI fileservice 102
window settings 93

L
libraries
adding to search path 29, 270
PFC 15,235
Library Extender 226
linkage service 71
list service 114
ListView 141
logical unit of work service
usage 111
w_master pfc_Save process 195
logon dialog box 32, 242

M

m_dw pop-up menu 131
m_edit pop-up menu 131
m_lvspop-up menu 131
m_master, inheriting from 256
m_oc pop-up menu 131
m_tvspop-up menu 131
master/detail processing 71
MDI applications

building 33

frame menu (tutorial) 262

frame window (tutorial) 247

sheet management service 94

status bar service 95

PFC Library User’s Guide

Index

menu services 95

menus
creating your own 202
extending 202

inheritance strategies 202

modifying 255

pop-up 131, 206

servicesoverview 201

standard menu items 204
message logging 57, 211
message router

of_pfc_MessageRouter event 42

of_SendMessage function 42

overview 41

using 91
Message.StringParm (tutorial example) 259
metaclass service 111
MicroHelp, automatic update 134
Migration Assistant 226
most recently used object service 54
multirow selection, row selection service 84
multitable update service 74

N

n_cst_appmanager
defininggnv_app 241
settingup 29
n_cst_apppreference 53
n_cst debug 52
n_cst_ dwcache 50
n_cst dwsrv 64
n_cst_dwsrv_dropdownsearch 67
n_cst_dwsrv_filter 67
n_cst dwsrv_find 70
n_cst_dwsrv_linkage 71
n_cst_dwsrv_multitable 74
n_cst_dwsrv_printpreview
tutorial usage 289
usage 75
n_cst_dwsrv_property

tutorial usage 275
usage 76
n_cst_dwsrv_querymode 77

295

Index

n_cst_dwsrv_report

tutorial usage 289
usage 78
n_cst_dwsrv_reqcolumn 81
n_cst dwsrv_resize 85
n_cst_dwsrv_rowmanager
tutorial usage 275
usage 82
n_cst_dwsrv_rowselection
tutorial usage 275
usage 84
n_cst_dwsrv_sort

tutorial usage 275
usage 87
n_cst_eror 57
n_cst_luw

usage 111

w_master pfc_Save process 195
n_cst_mru, usage 54
n_cst resize 96
n_cst_security 60
n_cst_tmgmultiple 126
n_cst_tmgsingle 126
n_cst_trregistration 62
n_cst winsrv - 92
n_cst_winsrv_preference 93
n_cst_winsrv_sheetmanager
usage 94
n_cst_winsrv_statusbar

usage 95
ntmg 126
n_tr

autorollback 44, 62
creating an instance 44
initializing 44
registering atransaction 62
replacing default Transaction object 44, 244
usage 43
nilisnull property 81
numerical service 103

O

object administrator 19

296

object-oriented programming
delegation 11
encapsulation 7
inheritance 7
polymorphism 7
usagein PFC 8

of_SendMessage function
processdiagram 42
tutorial example 259
using 91

online Help
dialog box Help 230
enabling for an application 46

operational polymorphism 8

overloading functions 8

overriding functions 8

P
paste 131
paste special 131
PBLs 15
PBR files 229
PFC
DLLs 227
libraries 15, 235
services 9

pfc_MessageRouter event
processdiagram 42
using 91
pfc_Saveprocess 195
PFCDLG.HLP 230
platform service 105
polymorphism 7
pop-up menus, listof 131
post-open processing 250
PowerBuilder, prerequisite concepts
preference service
application 53
window 93
pre-open processing 250
prerequisite concepts 4
print preview service
tutorial usage 289
usage 75

PowerBuilder

progress bar control 183
Propertieswindow 207

Q

guerymode service 77

R

reference variables 5, 63
registry

window settings 93
replace service 70
reporting service

tutorial usage 289

usage 78
required column service 81
resize service

Datawindow 85

PFC 96

response windows 194

RichTextEdit 159

right mouse button support
disabling 132
pop-up menus 131

row management service
tutorial usage 275
usage 82

row selection service
tutorial usage 275
usage 84

S

SDI applications, building 34

security service
database 224
implementing security in an application
usage 60

security utility
administration utility 215
assigning to users and groups 221
overview 213

PFC Library User’s Guide

scanner 218

security database 224

specifying secured controls 220

usersand groups 215
selectall 131
selection service 106
self-updating objects

about 111

enabling 200
services, listof 9
sheet management service 94
sheet menu, tutorial example 265, 267
sheet windows

menu (tutorial) 255

opening 248

tutorial usage 271, 286
single-row selection, row selection service
sort service

tutorial usage 275

usage 87
splash screen 31, 252
splitbar control 182
SQL parsing service 108
SQL Spy utility 210
SQLCA,usingn_tr 43,244
standard class user objects 5
standard visual user objects 5, 129
status bar service 95
statusflags 209
string-handling service 109
StringParm, using (tutorial example) 259

T

Tab control
resizeservice 96
usage 165
timing service 126
toolbars, controlling 92
transaction management 43
Transaction object
initializing 44
registration 62
usingn tras 244

84

Index

297

Index

transaction registration service
TreeView 146

U

u_caculator 169
u_caendar 174

u_ddib
autoscroll 133
autoselect 133

editing functions 131
right-mouse button support
u_ddplb

autoscroll 133
autoselect 133
editing functions 131
right-mouse button support
u_dw

DataWindow services 63
editing functions 131
overview 135

131

131

retrieving rows 276, 278, 289

right-mouse button support
tutorial usage 272, 287

undelete 84
u_em
autoselect 133

editing functions 131
right-mouse button support
u_lvs
right-mouse button support
usage 141
u_mle
autoselect 133
editing functions 131
right-mouse button support
u_oc
editing functions 131
right-mouse button support
u_progressbar 183
u_rte
editing functions 131
right-mouse button support
usage 159

298

131

131

131

131

131

131

u sle

autoselect 133

editing functions 131
right-mouse button support 131
u_st splitbar 182
utab 165
u_tabpg 165
u_tvs

right-mouse button support 131
usage 146
undelete 84
undo 131
user objects

class 5

visua 5

Vv

visual user objects
custom 5,129
standard 5, 129

W

w_logon dialog box, displaying 32, 242
w_product_report, creating (tutorial) 286
w_products, creating (tutorial) 271
w_sheet, inheriting from 271, 286
w_splashwindow 31, 252
window

post-open processing 250

pre-open processing 250

resizeservice 96
window services

base 92

list 90

preference 93

sheet management 94

statusbar 95
windows

basicusage 192

enabling services 192

pfc_Saveprocess 195

response 194

PowerBuilder

Z

zoom
absolute 75
relative 81

PFC Library User’s Guide 299

300 PowerBuilder

	PowerBuilder Foundation Class Library User’s Guide
	CHAPTER 1 About the PowerBuilder Foundation Class Library
	Understanding PFC
	Understanding PowerBuilder
	PowerBuilder libraries and objects
	Object-oriented programming

	How PFC uses object orientation
	How PFC uses the extension level
	The PFC components

	CHAPTER 2 Designing a Class Library
	Using PFC to design a class library
	Choosing an extension strategy
	Creating an intermediate extension level
	Using the existing PFC extension level

	Defining a new service

	CHAPTER 3 PFC Programming Basics
	Setting up the application manager
	Building applications
	Using attribute objects
	Using PFC constants
	The message router
	Transaction management with PFC
	Calling ancestor functions and events
	Adding online Help to an application
	Installing PFC upgrades

	CHAPTER 4 Using PFC Services
	Application services
	DataWindow caching service
	Debugging service
	Application preference service
	Most recently used object service
	Error message service
	Security service
	Transaction registration service

	DataWindow services
	DataWindow services ancestor
	Drop-down DataWindow search service
	Filter service
	Find and replace service
	Linkage service
	Multitable update service
	Print preview service
	DataWindow properties service
	Query mode service
	Reporting service
	Required column service
	Row management service
	Row selection service
	DataWindow resize service
	Sort service

	Window services
	Basic window services
	Preference service
	Sheet management service
	Status bar service

	Menu service
	Resize service
	Conversion service
	Date/Time service
	File service
	INI file service
	Numerical service
	Platform service
	Selection service
	SQL parsing service
	String-handling service
	Metaclass service
	Logical unit of work service
	Implementing self-updating objects

	List service
	Using a basic list
	Using a stack
	Using a queue
	Using a tree
	Creating a comparison object

	Timing service

	CHAPTER 5 Using PFC Visual Controls
	About PFC visual controls
	Using standard visual user objects
	Using basic functionality
	Cut, copy, paste, and other editing functions
	Using right-mouse button support
	Using autoscroll in drop-down lists
	Using autoselect
	Using selection inversion in list boxes
	Using the GetFocus event

	Using advanced functionality
	Using the u_dw DataWindow control
	Using the u_lvs ListView control
	Using the u_tvs TreeView control
	Using the u_rte RichTextEdit control
	Using the u_oc OLE control
	Using the u_tab Tab control and the u_tabpg user object

	Using custom visual user objects
	Using the calculator control
	Using the calendar control
	Using the splitbar control
	Using the progress bar control

	CHAPTER 6 Using PFC Windows and Menus
	Using PFC windows
	Window usage basics
	Using response windows
	Using the pfc_Save process

	Using menus with PFC
	Two menu inheritance strategies
	Extending PFC menus
	Creating your own menus
	Using standard menu items
	Using pop-up menus

	CHAPTER 7 PFC Utilities
	DataWindow Properties window
	SQL Spy
	Security
	Defining users and groups
	Running the security scanner
	Defining security for users and groups
	Implementing security in an application
	Maintaining the security database

	Library Extender
	Migration Assistant

	CHAPTER 8 Deploying a PFC Application
	Choosing a deployment strategy
	Using PBR files
	Deploying database tables
	Deploying PFC dialog box Help

	Index

