A guide to wrapping a .NET Windows Framework Forms
Control for PowerBuilder v1.0

Contents
A guide to wrapping a .NET Windows Framework Forms Control for PowerBuilder v1.0....... 1
LN o T 18 T} 1 o o N 2
o= 0 0] o] (= T O PO OP PRSPPI 2
£ (=] o 1< TSR 2
G ETtiNG STAITEA eniniiiii ittt et ettt e e e sa e eaetensaaneaansansnenaananrens 2
(01 (T LI oAV o] Co) [T o] RN 2
)] T U PO PEPPPP PP PPRTPPPRTPRt 3
Reference Visual BasiCccuviiiiiiiiiiiiiiiiiiiii 3
PaYo o BY/o 0]l ele] 411 o] N TP P PP TP PP PP 4
WIraP the CONTIOL. e ittt e et e et e et e s e e eatensanensananennanens 4
Add an INTEITACEt 5
Make it COM @CCESSIDLE....uuiiiiiiiiiii e e e 5
PN 1Y) (@ 0] gL £ 1 1=11 o 1= o 5
e (oY [=To1 ll = o] o 1=T n € =1 P 5
Making the Code regiStry rEadY ...u i e e e e e e e eaeaaes 7
BUILA The dll.ceeieeiieii ettt ea e 8
REZISTEI the Al c.eeininiiiiiii e e e ettt e e e et e e e e e e s e e e e enenenenannes 8

USE it iN POWEIBUILAET et ettt ettt et e e s ensensenersensenensenees 9

Introduction

Currently the only way to use visual .NET controls in PowerBuilder is to build them as
Active/X controls.

The is a guide on how to take a visual .NET Windows Framework Forms control and turn it
into a control that can be placed on a window in a PowerBuilder application in the same
way any Active/X control can.

Example

An example C# .NET Framework 4.8 solution is included, PBTextBox. It wraps the standard
.NET TextBox so it can be used on a PowerBuilder window. It shows the mechanics required
to wrap a .NET control, which when built will produce an Active/X control that PowerBuilder
recognizes.

Steps

These are the steps requited:

e Create a new project

e Add your control

e Wrap the control

e Make it COM accessible
e Build the dl

e Registerthe dll

e Useitin PowerBuilder

Getting started

Create a new project
Create a new Windows Forms Control Library (.NET Framework)

Create a new project

Recent pfOiECt templates All languages - All platforms - All project types

!-i‘.l’ Windows Forms Control Library (.MET Framework)
B

. Windows Forms Control Library (.N mework) G _ .
i sy i L ey (AT R ey A project for creating controls to use in Windows Forms (WinForms) applications

-~ £ - A C# Windows Desktop Library
M Class Library (NET Framework)

maVB Windows Forms Contral Library (NET Framework)
Windows Forms App Cc# !E A project for creating controls to use in Windows Forms (WinForms) applications
Visual Basic Windows Desktop Library
@] MSTest Test Project
-ifi Windows Forms Control Library

N Integration Services Project A project template for creating a contrel library that targets .NET Windows Forms

Make sure itis using .NET Framework 4.8.x

Configure your new project

Windows Forms Control Library (NET Framework)

c# Windows Desktop

Project name
WindowsFormsControlLibraryl

Location
Solution name (1)

¥'| Place solution and project in the same directory
Framework

MET Framework 4.8.1

Project will be created in "FAD nsControllibrary 14"

Once Visual Studio has finished creating the new project you’ll be presented with an empty
user control ready to hold your control.

UserControll.cs [Design] & >

X86

Ensure the project is built as an x86 dll by setting the correct solution platform if you will be
calling it from a 32-bit PowerBuilder application.

Debug - =x=86

Reference Visual Basic

Right-click on References in the Solution Explorer and select Add Reference...

Search Solution Explorer (Ctrl+;)
4 PETextBox
["' F'rljl;:lEI'tiE'E-

4 & References
;5 Add Reference...
o
o

Add Service Reference...

Add Analyzer...
Click on Framework and check Microsoft.VisualBasic

This is used in some of the attributes we add to classes later

Debug - x86

Active solution configuration: Active solution platform:

Debug ~| |x86 ~

Project contexts (check the project configurations to build or deploy):

Project Configuration Platform Build Deploy
PBTextBox Debug ~ || a6 =
Close
Add your control

The example uses a standard Windows Forms control, you may be using a control from a
third-party. You need to follow their instructions to make sure it is available in the project,
and you can place it on top of the UserControl1 or add it in code, whichever you prefer. As a
PowerBuilder programmer | tend to prefer using the designers rather than just writing code.

Make sure the third-party control you want to use is available in the Toolbox and drag it onto
UserControl1 (rename everything as you would like). Set the properties as you wish so it
auto sizes etc.

Wrap the control

The control will come with properties, methods and events but you won’t be able to directly
access these from PowerBuilder. You’ll need to add your own properties, methods and
events that call the ones on the control. That’s the wrapping part.

Add a few methods you want to call. You can directly map your methods to the third-party
control methods, or just add your own more complex, and more useful methods for your
project.

Add an Interface

To make those methods, properties and events available to PowerBuilder you need to hide
the methods properties and events on the third-party control that can’t be accessed.
Otherwise the assembly won’t register in a COM accessible way. You do this by adding an
interface that details the properties, methods and events you added in your wrapper that
you want to be available in PowerBuilder.

In the example | have one Property, Text, and two methods, GetText, ClearText. So my
interface, IPBTextBoxControl, looks like this

public interface IPBTextBoxControl

{
string Text { get; set; }
string GetText();
void ClearText();

}

Inherit from this call in the main class, in the example:

public partial class PBTextBoxControl : UserControl, IPBTextBoxControl

Make it COM accessible

Now comes the tricky part, | don’t really understand what all this stuff does, but it seems to
work.

ActiveXControlHelper
Add the ActiveXControlHelper cs file from the sample project to your project, set the
correct namespace when you do.

| believe this is used to make sure the dll registers in such a way itis accessible to
PowerBuilder. If you just follow the examples on the internet of creating an Active/X control,
this bitis missing and PowerBuilder won’t display your control in it’s list of Active/X
controls.

Project Properties
Right-click on you project in Solution Explorer and select Properties.

Click on Application, and then the Assembly Information button.

Application

NSA MSA
Build
Build Events Assembly name: Default namespace:
Debug PETextBox | |PBTextBox
Resources Target framework: Output type:
Services MET Framework 4.8.1 ~ | | Class Library
Settings Auto-generate binding redirects
Reference Paths Startup object:
Signing (Mot set) 5 | Assembly Information...

Code Analysis

Resources

Check “make assembly COM visible”. No idea what this does, but it is required.

Assembly Information 7 X
Title: |PBTextBox |
Description: | |
Company: | |
Product: |PBTextBox |
Copyright: |Cnpyright © 2024 |
Trademark: | |
Assembly version: |1 o I Jp]

File version: 1 o I Jp |
GUID: | 7144fe6-dd6e-403d-90l12-638085fd 149 |
Neutral language: |(None) v
Make assembly COM-Visible

o

Click on Build and make sure “Register for COM interop” is not checked.

Application

Configuration: | Active (Debug) w Platform: | Active (x86) w
Build

Build Events General

Debug
Conditional compilation symbols:

Resources

Define DEBEUG constant
Define TRACE constant

Sel
Settings
Reference Paths Platform target: %86 ~
Signing

Code Analysis [Allew unsafe code

[Optimize code
Errors and warnings

Warning level: 4 ~

Suppress warnings:

Treat warnings as errers

® Mone
O Al
() Specific wamnings:

Output

Output path: bin'x86\Debug. Browse...

[¥ML documentation file:
[Register for COM interop

Generate serialization assembly: | Auto ~

Advanced...

| believe this is because we need to register the dll ourselves in the way it requires rather
than using the in-built register.

Making the code registry ready
Add these using to your class if any are missing

using Microsoft.VisualBasic;
using System;
using System.ComponentModel;

using System.Runtime.InteropServices;
using System.Windows.Forms;

Add this one to the Interface class
using System.Runtime.InteropServices;

GUIDs are used to identify the dll in the registry so we need to specify the GUIDs ourselves.
You can generate a new GUID in Visual Studio using Tools | Create GUID.

Add three constants do your class, PBTextControl in the sample. Like this:

public const string Classld = "DE8F83A2-480D-4BC4-AB96-4BC1E8A159D3";
public const string Interfaceld = "A1B2C3D4-E5F6-7890-1234-56789ABCDEF0";
public const string Eventsld = "97127976-5374-444F-8748-3153463A288D";

Create new GUIDs and replace the ones here, there should be three different GUIDs.

These identify the various parts of the class and must be changed if you want to create a
new version and keep the old one. | also suggest changing the namespace or class name to
add a version number, if you think you will need multiple versions on the control on a given
PC at the same time.

Add the COM Register Functions to the class under the GUID declarations

[EditorBrowsable(EditorBrowsableState.Never)]
[ComRegisterFunction]

private static void Register(System.Type t)

{

ComRegistration.RegisterControl(t);

}

[EditorBrowsable(EditorBrowsableState.Never)]
[ComUnregisterFunction]

private static void Unregister(System.Type t)

{

ComRegistration.UnregisterControl(t);

}

Add the three attributes to the top of the class to set how the class should be registered. In
the example:

[Guid(PBTextBoxControl.Classld), ClassInterface(ClassinterfaceType.None)]
[ComSourcelnterfaces("PBTextBox.IPBTextBoxControl")]

[ComClass(PBTextBoxControl.Classld, PBTextBoxControl.Interfaceld, PBTextBoxControl.Eventsld)]
public partial class PBTextBoxControl : UserControl, IPBTextBoxControl

Ensure you replace the namespace, class name, and interface name in these with yours.

Add the two attributes to the Interface class to get is ready for the registry, in the example:

[ComVisible(true)]
[InterfaceType(CominterfaceType.InterfacelsIDispatch)]
public interface IPBTextBoxControl

Build the dll

Click Build | Build Solution — check the build was successful and
Register the dll
Open a command prompt as administrator.

Change to the drive your dll was built to, if different from C:\

CD to the folder the dll was built to

Run

Regasm <yourdllname>.dll /tlb:<yourdllname>.tlb /codebase

You should get a result like this:

Administrator: Command Prompt

Microsoft Corporation. All rights reserwved.

Ignore the warning and look for “Types registered successfully” and “type library was
registered successfully”.

NOTE: You must be using the correct REGASM.EXE, you want the 32-bit one and the one for
.NET 4.x. usually locate these on the disk and copy them to the folder with the dllin to be
sure the correct one is being used.

Feel free to automate this with a bat file or a powershell script to make life easier.

I’m not sure how often you need to actually do it, if just the once is enough, or any time you
make code changes. | suspect the once may be enough if the GUIDs aren’t changed.

NOTE: PowerBuilder holds on to the dll. So if you run an application from the PowerBuilder
IDE that uses this dll, close the application but keep the IDE open, the dllis locked, and
builds will fail. You have to close the PowerBuilder IDE every time, before you can build the
dll again. It’s very annoying.

Use it in PowerBuilder

Open the window you wish to place the control in in PowerBuilder.

Select Insert | Control | Ole... and then the Insert Control Tab.
Find your control in the list, it will be called <namespace>.<class>, for the example

PBTextBox.PBTextBoxControl

Create New Create From File Insert Contral

Control Type:
" Panelocator Class ~
Register New...
& PBTextBox.PETextBoxControl
Unregister
s PDFCreactiveX Class
Browse...

7 PMACharts_2_10_00,PMACharts
W

Result
Inserts a new PETextBox.PETextBoxControl OLE

custom control into your document.

(0]'4 Cancel Help

Click on OK and place the control on your window.

Name the control as you wish, for example ole_PBTextBox

You can access the properties and methods like so:

Ole_PBTextBox.object.ClearText()
ole_PBTextBox.object.Text = “Hello World”
ls_text = ole_PBTextBox.GetText()

Arguments can be passed as long as there are maychign datatypes in .NET, and results can

be returned. For complex result sets you can put them into an olo object and parse out the

result:

ole_result = ole_control.object.Method1(param1, param2)

If IsNull(ole_result) = FALSE Then
ls_value1 = ole_result.object.Value1

ls_value2 = ole_result.object.Value2
End If

NOTE: The method and property names are case sensitive and must exactly match the one

on the C# class.

