Creating QR Codes in PB Using the Quricol DLL
John Fauss
Quricol is the name of a utility written in C++ that can be used to create a Bitmap (.bmp) or Portable Network Graphics (.png) file containing a QR (Quick Response) 2-D barcode. Quricol is implemented as a Dynamic-Link Library (DLL) that can be easily interfaced with a PB application in the same way Windows API functions can be called… via PB External Function Declarations (EFD’s).
Whew! Is that enough acronyms for you? It is for me.
I don’t wish to run afoul of any distribution/licensing issues, so you’ll need to download a copy of the Quricol utility from GitHub. Place the DLL’s in the same folder as the example application. A link to download a zipped copy of the 32-bit and 64-bit versions of the Quricol binaries (DLL’s) is listed below:
https://github.com/perevoznyk/quricol/releases/tag/v2.1
If you’re interested, you can also download the C++ source code from the same web page.
The QuricolExample Application
This document accompanies a small, single-window example application that uses the Quricol utility to create a QR code graphics file and display it in a DataWindow. Here’s an example of what the window looks like:
[image: ]
I’ll provide some explanation on the PB objects and code shortly, but let’s start with a little QR-related terminology that you see in the screenshot.
QR-Related Terminology
Datatype
There are four classifications, or types, of data that can be encoded into a QR code:
Numeric	The data consists only of the digits 0-9.
Alphanumeric	The data consists only of digits (0-9), uppercase letters (A-Z), and the following special characters: Space, $ (dollar sign), % (percent sign), * (asterisk), + (plus sign), - (hyphen/dash), comma, period, / (forward slash), and : (colon).
Kanji	Kanji is a double-byte character set that predates the nearly universal adoption of Unicode. I’ve elected to not support Kanji characters in the example application, so this is the last you’ll hear of it.
Binary	8-bit characters encoded using the ISO 8859-1, or Latin Alphabet 1 code page… what we typically consider to be “normal” text, which is ANSI characters. PB utilizes Unicode characters, so the data passed into the Quricol DLL will be converted into ANSI characters via the PB external function declaration.
You’ll see in the preceding screenshot that the textual data to be encoded that was supplied is recognized as “Binary” QR data. Quricol examines the data to be encoded to determine its type, trying to identify the most storage-efficient type that works. The amount of data that can be encoded depends on its datatype. For example, up to three numeric digit characters can be represented by only ten bits, but a single text (binary) character requires eight bits. Look up “QR Code” in Wikipedia if you wish to learn more.
Version
There are currently 40 versions of the standard QR code and they are numbered 1-40. The version number designates the size (width and height, in “modules”, or white/black mini-squares, which I prefer to think of as bits. A version 1 QR code is 21 modules wide and 21 modules high. Each increment in version number increases both the width and height by 4 modules. A version 40 QR code is 177x177 modules in size.
The Quricol utility always creates a QR code whose version/size allows it to encode as much of the data that is possible. For example, if you encode “ABCDEFGH” at a high error-correction level (more on that next), Quricol will create a version 1 QR code, because the data is Alphanumeric (uppercase letters only) and a version 1 QR code can encode up to ten alphanumeric characters using high error-correction. However, if you encode “abcdefgh” (lowercase letters, which makes this datatype binary), Quricol will create a version 2 QR code, because a version 1 QR code can encode only a maximum of seven binary/text characters using high error-correction.
Error-Correction Level
The specification for QR codes always includes error-correction bits. This helps scanners correctly interpret the encoded data if part of the image is distorted, obscured or missing. There are four supported levels of error correction:
Low	Up to 7% of data modules can be restored.
Medium	Up to 15% of data modules can be restored.
Quartile	Up to 25% of data modules can be restored.
High	Up to 30 % of data modules can be restored.
The error-correction data is included in the QR code and the higher the level of error-correction, the more modules/bits within the QR code are utilized for error-correction, which reduces the encoding capacity. For example, a version 1 QR code using low error-correction can encode up to 17 binary (text) characters, but it can only encode up to seven characters using high error-correction.
The Quricol utility will always utilize the error-correction level you request… it does not adjust error-correction as it does the version.
Margin
This refers to the border area on all sides of the QR code, expressed as the number of modules. The Quricol utility can create a QR code with a margin ranging from zero (0) to ten (10).
Scale Factor
This is not a QR-related term or property. I implemented the concept of scale factor (which enlarges the image of the QR code) purely as an exercise. Based on my testing, altering the scale of a QR code does not adversely affect its readability, and for smaller versions, scaling improves readability (you don’t have to hold your phone’s camera as close to the QR code).
The scale factor can range from 1.0 up to 5.0, but the practical upper limit depends on the size/version of the QR code due to the constraint on the amount of space available in the detail band in the DataWindow. You can always request a scale factor of 5.0, but actual size of the QR code (dictated by the version and margin) may result in the window informing you that a smaller scale factor was actually used.
Truncate Data to Fit, If Needed
This is also behavior I implemented, since the Quricol utility will increase or decrease the version based on the type of data, the amount of data and the error-correction level.
By checking this checkbox, the application will truncate the data so that the Quricol utility will not increase the version. The utility will, however, still decrease the version if a smaller version number will adequately contain the data.
The following screenshot shows the same data to be encoded as before, but with the version set to 10, the margin to 5, and the truncate checkbox checked.
[image: ]
Note that the descriptive information directly below the filename lets you know that data was truncated.
Filename
Use this field to specify the path/name/extension of the graphics file that will contain the QR code. The file extension must be either “.bmp” or “.png”, as these are the only graphics formats supported by the Quricol utility. If you use a wildcard asterisk for the path and name, as shown in the screenshots, the application will assign a path and filename. The path will be the current directory where the app is running from, and the filename will be constructed from the QR version, error-correction (ERC) level, and the date and time when the graphics file is created, as shown in both screenshots.
Notes About the Objects in the PB Application
The application is pretty simple and straightforward, and the code is generously commented. I’m including a few notes here that may help you adapt the techniques and/or code for you own use.
The Application Object
The external function declarations for calling the Quricol utility are defined in the application object as global EFD’s. There are four. Two for use when the application runs in a 32-bit process and two when it runs as a 64-bit process. One function of each bitness pair of functions is used to create a QR code image in a .bmp file and the other as a .png file.
As mentioned earlier, note that the Quricol DLL expects the string arguments to use ANSI encoding, so the EFD’s ensures this is done by including “xxxx;Ansi” in the ALIAS FOR clause.
The application uses an external source DataWindow object (d_ext_qrcode_specs) that contains data describing the size (module width and height) and data capacity limits for each datatype, for every version and error-correction level combination. The app uses these specifications to determine the size of the image file for scaling purposes and for determining if data truncation will or should occur. This information was obtained from a web search:
https://www.qrcode.com/en/about/version.html
A global variable holds a reference to the DataStore managed by the app for the QR code specifications. Since the data is defined in the DataWindow object, no database connection is required.
A global Environment object is used to check the bitness of the application when it is running. There is also a global String array the app uses to keep track of every graphics file it creates, so that it can delete these files when the app closes, if you choose to do so when prompted.
The Data Entry/Display DataWindow Object
An external source DataWindow object (d_ext_qrcode) is used for data entry and to display the graphics file created by the Quricol utility.
The image is displayed via a column object that has the path/name/extension of the graphics file placed into it. This column object (named “image_fn”) uses the “Display As Picture” property (a checkbox on the “General” properties pane in the DataWindow painter) to automatically render the image. The column object is dynamically managed via code in the window.
This DataWindow object contains a hidden line object (named “l_y_limit”) that is used to identify the extent for the resized column object that displays the QR code. Alternatively, I could’ve used the height of the Detail band.
The Global Function
The f_Create_QRCode global function invokes the Quricol utility. It determines which of the four external functions should be called based on the input values and the bitness of the application.
One item worth noting is the error-correction level argument: This argument value to the Quricol DLL is a Long (0 = Low, 1 = Medium, 2 = Quartile, 3 = High). The error-correction level column in the data entry DataWindow object is defined as a string of length 1 (“L”, “M”, “Q”, or “H”). There is code in the window that performs the translation from the String value to the numeric equivalent.
This global function is where the path and name of the graphics file is dynamically determined if a wildcard asterisk has been supplied.
The Window
Although the DataWindow control contains a small amount of code placed into four events (ButtonClicked, Constructor, ItemChanged and ItemError), the majority of code resides in a single object function in the window, of_ValidateQRCodeInputs. This object function is called by the ButtonClicked event script of the DataWindow control. If input validation is successful, the f_Create_QRCode global function is called to create the graphics file.
The of_ValidateQRCodeInputs function performs several tasks:
· Clears the display of any existing QR code.
· Validates the input data values.
· Determines the type of data to be encoded.
· Finds the specifications of the requested QR code configuration.
· Truncates the data to fit within the capacity of the requested QR code, if needed.
· Checks if a larger or smaller QR code version will be created. If so, it prompts the user about the version change and if approval is given, it obtains the specifications of the new configuration.
· Constructs and displays a description of the QR code that is to be created.
· Determines if the QR code can be displayed at the requested scale factor without cropping. If not, the maximum scale factor that will fit is determined and a message is issued.
· The size of the column object in the DataWindow is resized.
I hope you find this example application helpful. 
If you have questions, contact me via email at: okie.husker.1979@gmail.com
Good luck!
image1.png

image2.png

