
PowerBuilder Foundation Class
Library User’s Guide

PowerBuilder®

9

DOCUMENT ID: 37779-01-0900-01

LAST REVISED: March 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup
Server, BizTracker, ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench,
DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct
Connect Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP,
ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX,
ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect,
InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, MainframeConnect, Maintenance Express, MDI Access Server, MDI Database
Gateway, media.splash, MetaWorks, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips,
Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, Rapport, Report Workbench,
Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Resource
Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL
Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries,
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase
SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10,
System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite.NET,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 11/02

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

PFC Library User’s Guide iii

About This Book ... ix

PART 1 PFC OVERVIEW

CHAPTER 1 About the PowerBuilder Foundation Class Library..................... 3
Understanding PFC.. 3
Understanding PowerBuilder ... 4

PowerBuilder libraries and objects .. 4
Object-oriented programming.. 7

How PFC uses object orientation... 8
How PFC uses the extension level... 11
The PFC components .. 15

PART 2 PFC CLASS LIBRARY DESIGN

CHAPTER 2 Designing a Class Library .. 19
Using PFC to design a class library ... 19
Choosing an extension strategy ... 20

Creating an intermediate extension level 20
Using the existing PFC extension level 23

Defining a new service ... 24

PART 3 PFC PROGRAMMING

CHAPTER 3 PFC Programming Basics .. 29
Setting up the application manager.. 29
Building applications .. 33
Using attribute objects.. 38
Using PFC constants ... 40
The message router ... 41

Contents

iv PowerBuilder

Transaction management with PFC... 43
Calling ancestor functions and events ... 45
Adding online Help to an application.. 46
Installing PFC upgrades... 47

CHAPTER 4 Using PFC Services... 49
Application services ... 49

DataWindow caching service .. 50
Debugging service... 52
Application preference service .. 52
Most recently used object service ... 54
Error message service .. 57
Security service ... 60
Transaction registration service .. 62

DataWindow services... 63
DataWindow services ancestor ... 64
Drop-down DataWindow search service 67
Filter service .. 67
Find and replace service ... 70
Linkage service ... 71
Multitable update service... 74
Print preview service ... 75
DataWindow properties service... 76
Query mode service .. 77
Reporting service .. 78
Required column service... 81
Row management service... 82
Row selection service.. 84
DataWindow resize service ... 85
Sort service ... 87

Window services .. 89
Basic window services .. 90
Preference service .. 93
Sheet management service... 94
Status bar service.. 94

Menu service.. 95
Resize service.. 96
Conversion service... 98
Date/Time service .. 99
File service ... 101
INI file service... 102
Numerical service... 103
Platform service ... 105
Selection service .. 106

Contents

PFC Library User’s Guide v

SQL parsing service... 108
String-handling service... 109
Metaclass service... 111
Logical unit of work service .. 111

Implementing self-updating objects....................................... 112
List service ... 114

Using a basic list ... 114
Using a stack... 118
Using a queue ... 120
Using a tree ... 121
Creating a comparison object.. 124

Timing service .. 126

CHAPTER 5 Using PFC Visual Controls .. 129
About PFC visual controls.. 129
Using standard visual user objects .. 130

Using basic functionality .. 130
Using advanced functionality... 135

Using custom visual user objects... 169
Using the calculator control ... 169
Using the calendar control... 174
Using the splitbar control ... 182
Using the progress bar control .. 183

CHAPTER 6 Using PFC Windows and Menus ... 191
Using PFC windows ... 191

Window usage basics.. 192
Using response windows... 194
Using the pfc_Save process.. 195

Using menus with PFC... 201
Two menu inheritance strategies .. 202
Extending PFC menus .. 202
Creating your own menus ... 202
Using standard menu items... 204
Using pop-up menus ... 206

CHAPTER 7 PFC Utilities... 207
DataWindow Properties window .. 207
SQL Spy... 210
Security .. 213

Defining users and groups .. 215
Running the security scanner.. 218

Contents

vi PowerBuilder

Defining security for users and groups.................................. 221
Implementing security in an application 223
Maintaining the security database... 224

Library Extender... 225
Migration Assistant ... 226

CHAPTER 8 Deploying a PFC Application.. 227
Choosing a deployment strategy.. 227
Using PBR files .. 229
Deploying database tables... 229
Deploying PFC dialog box Help ... 230

PART 4 PFC TUTORIAL

LESSON 1 Generate a PFC Application ... 233
Create a PFC application ... 234
Modify the application manager ... 237
Redefine a global variable and review events.............................. 241
Use the PFC Transaction Object service 244

LESSON 2 Create the Frame Window... 247
Create a descendent frame window... 248
Define pre- and post-open processing ... 250
Add script to open the frame window ... 252
Run the application .. 253

LESSON 3 Create Menus ... 255
Create a descendent menu.. 256
Add and modify items... 257
Create a frame menu ... 262
Associate the frame window with a menu 264
Create a menu for the w_products sheet 265
Create a menu for the w_product_report sheet 267

LESSON 4 Build the First Sheet Window ... 269
Add a library to the library list ... 270
Create a descendent window... 271
Add a DataWindow control... 272
Enable DataWindow services .. 275

Contents

PFC Library User’s Guide vii

Retrieve rows ... 278
Run the application .. 279

LESSON 5 Build the Second Sheet Window ... 285
Create a descendent window... 286
Add a DataWindow control... 287
Enable report and print preview services 289
Run the application .. 291

Index ... 293

viii PowerBuilder

PFC Library User’s Guide ix

About This Book

Subject This book describes how to use the PowerBuilder Foundation Class
Library (PFC).

Audience This book assumes that you:

• Are comfortable using Microsoft Windows applications

• Are currently developing applications with PowerBuilder and
understand the concepts and techniques described in the Applications
Techniques book

• Understand SQL and how to use your site-specific DBMS

This book has four parts, each for a specific group of PFC users:

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals web site to learn more about your product:

• The Technical Library CD contains product manuals and is included
with your software. The DynaText reader (included on the Technical
Library CD) allows you to access technical information about your
product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your
documentation package for instructions on installing and starting the
Technical Library.

Part Title Audience

1 PFC Overview All PFC users

2 PFC Class Library Design Object administrators

3 PFC Programming Application developers

4 PFC Tutorial All PFC users

x PowerBuilder

• The Technical Library Product Manuals web site is an HTML version of
the Technical Library CD that you can access using a standard web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

P A R T 1 PFC Overview

This part describes the PowerBuilder Foundation Class
Library and prerequisite PowerBuilder concepts.

This part is for all PFC users.

PFC Library User’s Guide 3

C H A P T E R 1 About the PowerBuilder
Foundation Class Library

About this chapter This chapter introduces the PowerBuilder Foundation Class Library
(PFC). It includes PFC basics, prerequisite PowerBuilder concepts,
object-oriented concepts, and a list of PFC components.

Contents

Understanding PFC
The PowerBuilder Foundation Class Library (PFC) is a set of
PowerBuilder objects that you customize and use to develop class
libraries. You can use these objects to provide corporate, departmental, or
application consistency. PFC also includes objects that you use as is for
utility purposes, such as debugging.

PowerBuilder objects PFC is written in PowerBuilder and delivered as PowerBuilder objects
with supporting PowerScript source code. It uses advanced PowerBuilder
object-oriented coding techniques, and features a service-oriented
design—that ensures that your application uses the minimum amount of
computer resources.

Read the code
PFC uses many advanced PowerBuilder coding techniques. You can use
the PowerBuilder PowerScript editor to examine the objects, instance
variables, events, and functions in PFC ancestor objects.

Topic Page

Understanding PFC 3

Understanding PowerBuilder 4

How PFC uses object orientation 8

How PFC uses the extension level 11

The PFC components 15

Understanding PowerBuilder

4 PowerBuilder

What this book
contains

This book explains PFC concepts (what things are and why you use them) as
well as usage information (how to program using PFC).

For more information For detailed information on PFC objects, instance variables, events, and
functions, see the PFC Object Reference.

Understanding PowerBuilder
You use PFC to create advanced, object-oriented PowerBuilder class libraries.
To get the most out of PFC and its object-oriented features, you must
understand PowerBuilder and its object-oriented features. This section gives an
overview of the PowerBuilder concepts with which you should be familiar.

Building PFC applications out of the box
PFC is designed primarily for building class libraries. But nothing prevents you
from using PFC as is to build applications.

For complete information on PowerBuilder concepts, see the PowerBuilder
User’s Guide.

PowerBuilder libraries and objects
PFC is delivered as a set of PowerBuilder libraries (PBLs). These libraries
contain the ancestor and descendent objects you use to write an application
with PFC.

PowerBuilder libraries Before you can use any PFC objects, you must add the PFC libraries to your
application’s library search path. PowerBuilder uses the library search path
(which you define in the Target properties sheet) to find referenced objects
during execution.

PowerBuilder objects These are the main PowerBuilder objects you use with PFC:

PowerBuilder objects Purpose

Windows The interface between a user and a PowerBuilder
application

Menus Lists of commands that a user can select in the
currently active window

CHAPTER 1 About the PowerBuilder Foundation Class Library

PFC Library User’s Guide 5

There are two types of user objects:

• Visual user objects

• Class user objects

Visual user objects A visual user object is a reusable visual control or set of
visual controls with a predefined behavior. PFC includes two types of visual
user objects:

• Standard visual user objects PFC provides a full set of standard visual
user objects. Each PFC standard visual user object corresponds to a
PowerBuilder window control. These objects include predefined
behaviors that provide complete integration with PFC services. In
particular, the u_dw DataWindow user object, offers extensive
functionality and integration with PFC services.

• Custom visual user objects PFC also use custom visual user objects.
Custom visual user objects contain a group of window controls. These
objects provide advanced functionality for use in specific situations.

PFC does not use external visual user objects. For complete information on
visual user objects, see the PowerBuilder User’s Guide.

Class user objects A class user object is a reusable nonvisual control you
use to implement processing with no visual component. PFC includes two
types of class user objects:

• Standard class user objects Inherit their definitions from built-in
PowerBuilder system objects. PFC provides standard class user objects for
transaction, error, and all other extendable system objects.

• Custom class user objects Inherit their definitions from the
PowerBuilder NonVisualObject class. Custom class user objects
encapsulate data and code. This type of class user object allows you to
define an object class from scratch.

PFC uses custom class user objects to implement many of its services and
provides functions to enable instances of these service objects.

It also provides reference variables, which are pointers to an instantiated
object. You use a reference variable to access an object’s instance
variables, functions, and events.

DataWindow objects Used to retrieve, present, and manipulate data

User objects Reusable components that you define once and use
many times

PowerBuilder objects Purpose

Understanding PowerBuilder

6 PowerBuilder

Functions PowerBuilder supports global functions and object functions. PFC performs
much of its processing through user-object functions. A function is a collection
of PowerScript statements that perform some processing. You pass zero or
more arguments to a function, and it may return a value.

For complete information on PFC object functions, see the PFC Object
Reference.

Events and user
events

Windows, user objects, and controls each have a predefined set of events. PFC
extends this by defining user events for many PFC objects. Events can accept
arguments and may return a value.

There are three types of PFC events:

You can also add code to call, trigger, or post predefined events and user events.

In this book
Unless otherwise qualified, this book uses the word event to refer to all three
types.

Functions and events
compared

Functions and events are similar in many ways: they may accept arguments and
return values; they both consist of PowerScript statements; they can be called,
triggered, and posted. But there are some differences between functions and
events:

This type of event Executes when the user performs

Predefined PowerBuilder
events

An action that causes the operating system to invoke the
event

Predefined user event An action (such as selecting a menu item) that causes
PFC to trigger the user event

Empty user events (you
add PowerScript code)

An action (such as selecting a menu item) that causes
PFC to trigger the user event

Feature Functions Events

Call to nonexistent
method

Invoking a nonexistent
function at runtime produces
an error

Invoking a nonexistent event
with TriggerEvent yields a
return value of -1

Processing of
ancestor script

Functions override ancestor
processing (although they
can call ancestor functions
using the Super keyword)

Events can extend or override
ancestor processing

CHAPTER 1 About the PowerBuilder Foundation Class Library

PFC Library User’s Guide 7

Object-oriented programming
Object-oriented programming tools support three fundamental principles:
inheritance, encapsulation, and polymorphism.

Inheritance Inheritance means that objects can be derived from existing objects, with
access to their visual component, data, and code. Inheritance saves coding
time, maximizes code reuse, and enhances consistency.

Encapsulation Encapsulation (also called information hiding) means that an object contains
its own data and code, allowing outside access as appropriate. PFC implements
encapsulation as follows:

• PFC defines object functions and instance variables as public or protected,
depending on the desired degree of outside access. PFC does not use the
private access level.

• For readable instance variables, PFC generally provides an
of_Getvariablename function.

• For Boolean instance variables, PFC generally provides an
of_Isvariablename function.

• For modifiable instance variables, PFC generally provides an
of_Setvariablename function.

• In certain cases, PFC defines an instance variable as public, allowing you
to access it directly.

Polymorphism Polymorphism means that functions with the same name behave differently
depending on the referenced object and the number of arguments. PFC
supports the following types of polymorphism:

Access Object functions can be
public, private, or protected

Events always have public
access

Overloading Functions of the same name
can take different arguments

Events cannot be overloaded

Feature Functions Events

How PFC uses object orientation

8 PowerBuilder

• With operational polymorphism, separate unrelated objects define a
function with the same name:

• With inclusional polymorphism, various objects in an inheritance chain
define a function with the same name but different arguments:

Overriding and
overloading

PowerBuilder supports both function overriding or function overloading:

• In function overriding, the descendent function has the same arguments or
argument data types.

• In function overloading, the descendent function (or an identically named
function in the same object) has different arguments or argument data
types.

How PFC uses object orientation
PFC uses all facets of PowerBuilder’s object-oriented capabilities.

Principles PFC uses the three principles of object orientation:

PFC uses To

Inheritance Implement a hierarchy of windows, menus, and user objects

Encapsulation Isolate each object’s data and code

Polymorphism Provide same-named functions (within one object, within an
inheritance hierarchy, and among multiple objects)

CHAPTER 1 About the PowerBuilder Foundation Class Library

PFC Library User’s Guide 9

Services PFC uses windows, standard class user objects, and custom class user objects
to implement an object-oriented design by isolating related types of processing
(such as DataWindow caching, row selection, and window resizing). These
related groups of processing are called services. Most services are
implemented as custom class user objects. PFC service types include:

Service category Service

Application services Application preferences

DataWindow caching

Debug

Error message

Most recently used object

Security

Transaction registration

Window services Base

Preferences

Sheet manager

Status bar

DataWindow services Base

DataWindow resize

Drop-down search

Filter

Find

Linkage

Multitable update

Properties

Querymode

Report

Required column

Resize

Row manager

Row selection

Sort

DataStore services Base

Multitable update

Print preview

Report

How PFC uses object orientation

10 PowerBuilder

Enabling services selectively Selectively instantiating service objects
provides you with complete flexibility in the PFC functionality used by your
application—and allows your applications to use fewer resources. PFC
automatically destroys all service objects created by an application.

Enabling services selectively has many benefits, including:

• Minimizing the number of ancestor objects typically found in a deep
inheritance chain

• Minimizing application overhead (use only the services you need)

• Building both simple and complex applications

• Ease of use and maintenance (you do not have to write multiple scripts to
override ancestor processing)

Delegation PFC’s service orientation reflects the object-oriented concept of
delegation, which divides the main object and its implementation into separate
object hierarchies.

Global services File

INI file

Logical unit of work

MetaClass

Menu

Numerical

Platform

Resize

RTE find

Selection

SQL

SQL Spy

String

Service category Service

CHAPTER 1 About the PowerBuilder Foundation Class Library

PFC Library User’s Guide 11

PFC uses two types of relationships for delegation:

• Aggregate relationship The service object cannot function apart from
its owning object. This is sometimes called a whole-part relationship. For
example, the u_dw DataWindow visual user object uses the
n_cst_dwsrv_querymode user object for query mode services:

• Associative relationship The service object can function alone. For
example, string services are provided by the n_cst_string user object and
are available to objects throughout your application:

For more information on PFC service types and how to use them, see Chapter
4, “Using PFC Services”.

How PFC uses the extension level
No class library can meet your needs right out of the box. You typically modify
PFC objects to integrate application-wide functions and objects. Without the
PFC extension level, this could present a problem whenever a new version of
PFC is released: applying the new version would overwrite your
customizations, forcing you to reapply these changes manually.

How PFC uses the extension level

12 PowerBuilder

A separate extension
level

PFC implements an extension level in all its inheritance hierarchies. All
extension objects reside in separate PBLs, which are not affected when you
upgrade to the latest version:

Objects in the ancestor-level libraries contain all instance variables, events, and
functions; objects in the extension-level libraries are unmodified descendants
of corresponding objects in the ancestor library. But through inheritance they
have access to the ancestor’s instance variables, events, and functions.

To see the instance variables, events, and functions available to a descendent
object, use the PowerBuilder Browser.

Using an extension level has two major advantages:

• You can add site-, department-, and application-specific logic to extension
level objects

• The extension PBLs are not affected when upgrading to the latest version

Obsolete objects
The PFCOLD.PBL library contains obsolete objects. If you have an existing
PFC application, you may need to add this library to your application target
library list.

Contents Ancestor level Extension level

Application and global services PFCAPSRV.PBL PFEAPSRV.PBL

DataWindow services PFCDWSRV.PBL PFEDWSRV.PBL

Visual and standard class user
objects

PFCMAIN.PBL PFEMAIN.PBL

Utility services PFCUTIL.PBL PFEUTIL.PBL

Window services PFCWNSRV.PBL PFEWNSRV.PBL

CHAPTER 1 About the PowerBuilder Foundation Class Library

PFC Library User’s Guide 13

What you do You customize your PFC application by modifying objects at the extension
level. You do not modify ancestor objects. Your application’s objects use
extension-level user objects and inherit from extension-level windows:

The PFC object-
naming convention

PFC uses the following object-naming convention:

For example, the ancestor for the DataWindow selection service object is
pfc_n_cst_dwsrv; the extension-level descendant is n_cst_dwsrv.
Pfc_n_cst_dwsrv contains all code for the service; n_cst_dwsrv is an
unmodified descendant to which you may add application-specific instance
variables and code.

PFC-defined user events PFC-defined user events also use the pfc_ prefix.
This makes it easy for you to distinguish your application’s user events from
PFC’s user events.

PFC documentation uses extension-level names
PFC documentation always uses the extension-level name when referring to a
service object. For example, this book refers to w_master when discussing the
base-class window, not to pfc_w_master. But it’s important to remember that
the instance variables, events, and functions available to w_master are actually
defined in pfc_w_master.

For complete information on PFC object-naming conventions, see the PFC
Object Reference.

Level Name Contains

Ancestor objects Use the prefix pfc_ All instance variables, events,
and functions

Extension-level
objects

Have the same name as their
ancestor but without the
prefix pfc_

Unmodified descendants of PFC
ancestor objects

How PFC uses the extension level

14 PowerBuilder

Sample extension
scenario

PFC’s object hierarchies allow you to add extension logic at each level.
Because pfc_w_sheet inherits from w_master, for example, instance variables,
functions, and events you add to w_master are available to all descendent
windows:

Adding extension
levels

The extension layer provides for reusability within an application and
effectively insulates individual applications from PFC upgrades. But large
installations that have department-wide (and perhaps corporate-wide)
standards must extend this strategy further to implement additional levels
containing corporate and departmental standards and business rules.

If you are using PFC in an organization, you may want to create additional
extension levels to contain corporate or departmental variables, events, and
functions. Applications still use objects in PFC extension libraries but now
have access to additional ancestor instance variables, events, and functions:

CHAPTER 1 About the PowerBuilder Foundation Class Library

PFC Library User’s Guide 15

The PFC components
PFC is made up of the following:

• A set of PBLs (libraries)

You must ensure that the objects in these PBLs are available to PFC-based
applications by adding them to the application target library list.

• A database

• Code examples

• A sample application

The PFC PBLs PFC is distributed with PBLs containing ancestor objects and PBLs containing
extension-level objects. Each ancestor level/extension level set contains
objects that perform related services:

Use the Library painter
Use the PowerBuilder Library painter to see a list of all objects in PFC
libraries.

The PFC database PFC ships with the pfc.db local database. This database contains the following
tables:

Libraries Contents

PFCAPSRV.PBL

PFEAPSRV.PBL

Application manager, application service objects, and other
global service objects

PFCDWSRV.PBL

PFEDWSRV.PBL

DataWindow services, including user objects and utility
windows

PFCMAIN.PBL

PFEMAIN.PBL

Standard visual user object, custom visual user object, and
standard class user objects

PFCUTIL.PBL

PFEUTIL.PBL

Utility objects and services

PFCWNSRV.PBL

PFEWNSRV.PBL

Window services, including user objects, and utility windows

PFCOLD.PBL Obsolete PFC objects (base and extension-level objects)

Table Usage

Messages Error message service

Security_apps Security service

Security_groupings Security service

The PFC components

16 PowerBuilder

The PFC local database is intended for developer use only. If your application
uses the error message service or security service, you should copy these tables
to a server database, as described in “Deploying database tables” on page 229.

The PFC code
examples

Use the PFC code examples to view PFC objects and services in action and
learn how to code and implement most common PFC functionality. The PFC
code example interface provides extensive cross-reference and usage
information.

The PFC sample
application

Use PEAT (the PFC sample application) to see an example of PFC used in a
project estimation and tracking system.

Security_info Security service

Security_template Security service

Security_users Security service

Table Usage

P A R T 2 PFC Class Library Design

This part describes how to extend PFC to create your own
class library.

This part is for object administrators—those responsible
for class library maintenance, enhancement, and
implementation.

PFC Library User’s Guide 19

C H A P T E R 2 Designing a Class Library

About this chapter This chapter explains how to use PFC as the basis for your own class
library.

Contents

Using PFC to design a class library
PFC is a foundation upon which you build class libraries, leveraging
PFC’s extensible service-oriented architecture to customize behavior and
extend capabilities—and even define your own services.

The object administrator PowerBuilder users who use PFC to design class libraries are object
administrators. Object administrators can be:

• Corporate and departmental analysts Create PFC-based class
libraries to enable consistency and enhance functionality

• Consultants Create PFC-based class libraries to add value to their
services

• Vendors Use PFC as the basis for advanced class libraries that
meet the needs of a specific set of developers

Your role As object administrator, you will use PFC in a different way from
developers. You will customize and enhance PFC functionality for use by
all developers. You need a thorough understanding of PFC, as well as of
your organization’s needs. Based on anticipated usage, you will extend
PFC by adding and customizing objects, services, instance variables,
events, and functions.

Your first step is to choose a PFC extension strategy.

Topic Page

Using PFC to design a class library 19

Choosing an extension strategy 20

Defining a new service 24

Choosing an extension strategy

20 PowerBuilder

Choosing an extension strategy
Although there are many ways in which sites extend and implement PFC, there
are two main PFC extension strategies:

• Create an intermediate extension level

• Use the existing PFC extension level

Using separate
physical files

Regardless of strategy, each PFC application should have its own set of
physical files. You cannot share ancestor files (those whose name starts with
PFC). This is because of internal interdependencies of high-level extension
objects, such as w_master.

For example, assume that applications 1 and 2 have their own sets of PFE
extension-level libraries but share ancestor libraries. Application 1 adds a
function of_SetData to w_master in its version of PFEMAIN.PBL; this
function is available to all descendants of w_master, including pfc_w_main,
pfc_w_frame, and pfc_w_sheet in the shared ancestor libraries. Application 2
then regenerates the application.

Because application 2 has no of_SetData function in its PFEMAIN.PBL, all
internal references to of_SetData are removed from w_master descendants,
resulting in execution time and compiler errors for application 1.

Creating an intermediate extension level
To create objects that accommodate corporate or departmental usage but that
also allow developers to freely add application-wide code to the extension
level, you can define one or more intermediate extension levels. These
intermediate extension-level objects contain site- and department-specific
instance variables, events, and functions.

Following this strategy, you create a new extension level between the PFC
ancestor level and the PFC extension level. Then you redefine the PFC
extension hierarchy so that intermediate extension level objects descend from
PFC ancestor objects and PFC extension level objects descend from objects in
the intermediate extension level. Because PFC objects use the data type of PFC
extension level objects when declaring reference variables, these changes
become available immediately.

CHAPTER 2 Designing a Class Library

PFC Library User’s Guide 21

For example, you might create a customized descendant of pfc_
n_cst_appmanager:

Advantages This strategy has two advantages:

• Changes made to the objects in the intermediate extension level are
available to descendent objects in the PFC extension level

• The developer has complete control over the PFC extension level

Naming standards
You should give objects in the intermediate extension level a standard prefix
that reflects their usage. For example, if the intermediate extension level
contains additional class library functionality, use classlib_ as the prefix; if the
intermediate extension level contains corporate extensions, use corp_ as the
prefix.

What you do You add, modify, and extend PFC through objects in the intermediate extension
level.

To implement an intermediate extension level, you can use the Library
Extender or create intermediate extension level objects manually.

Use the Library Extender
It’s best to use the Library Extender to create intermediate extension levels.

See “Library Extender” on page 225.

Choosing an extension strategy

22 PowerBuilder

v To manually create an additional extension level and redefine the
inheritance hierarchy:

1 Create a PBL to contain intermediate extension level objects.

2 Define objects in the intermediate extension level (by inheriting from
objects in the PFC ancestor level) and define instance variables, functions,
and events as necessary. You can also define new objects in the
intermediate extension level.

3 Define instance variables, events, and functions in the extension level
objects as necessary.

4 Redefine the inheritance hierarchy by creating new PFC extension-level
objects that inherit from the newly defined extension level (instead of
inheriting from the PFC ancestor level).

How developers work This type of extension level usage gives developers complete control of the
PFC extension level. They can:

• Modify and use extension-level user objects

• Modify and inherit from extension-level windows, including w_master

• Modify and inherit from extension-level menus (optionally using them
directly)

For example, developers might add application-specific functionality to
w_sheet and use it as the ancestor for all sheet windows:

CHAPTER 2 Designing a Class Library

PFC Library User’s Guide 23

Using the existing PFC extension level
Following this strategy, you add corporate or departmental modifications to the
PFC extension level. Developers do not use the extension level.

Advantages This strategy has two advantages:

• Developers can share a common set of PBLs during the development
phase

• Users can share a common set of PBDs when deploying multiple PFC
applications

Disadvantages This strategy has several disadvantages:

• Developers cannot modify extension level objects. Changes are lost when
the object administrator creates a new version

• There is only one extension level. Corporate, departmental, and class
library extensions must all exist at the same level

• Developers cannot extend extension level objects. Because PFC uses the
data type of PFC extension level objects when declaring reference
variables, changes to descendent objects are not automatically available
throughout PFC

What you do You add, modify, and extend PFC through objects in the PFC extension level.

To create a new service, you add the object to the extension level and there is
no need for an ancestor object.

How developers work When working with this extension strategy, developers use PFC services but
do not modify any objects in the PFC extension level.

Defining a new service

24 PowerBuilder

All developer extensions must be done through inheritance. For example,
developers might add application-specific functionality to an application sheet
window and use it as the ancestor for all sheet windows:

Defining a new service
After researching your requirements, you may need to define a new service.
This might be an associative service (working with a main object such as a
DataWindow, DataStore, or window) or an aggregate service for use anywhere
in an application.

Where to define it
If you are using the existing PFC extension level, define your new service in
one or more separate PBLs.

If you are creating an extension level, define your ancestor object in the
intermediate extension level (the corporate level in the example ahead) and
your extension level object in the PFC extension level.

v To define an associative service:

1 Create a custom class user object that contains the necessary instance
variables, functions, and events. For example, define a DataWindow
service to perform automatic row insertion. In this case, the object should
inherit from n_cst_dwsrv.

CHAPTER 2 Designing a Class Library

PFC Library User’s Guide 25

2 Save this user object in the intermediate extension level. For example, if
you have an intermediate level for corporate objects, it might be named
corp_n_cst_dwsrv_autorowinsert.

3 Create a descendent user object in the extension level. For example,
n_cst_dwsrv_autorowinsert. Add no code to this object.

4 Add an instance variable to the main object in the intermediate extension
level. This variable should use the data type of the extension level object.
For example, update corp_u_dw by adding an inv_autorowinsert instance
variable of type n_cst_dwsrv_autorowinsert.

5 Add a function to the main object in the intermediate extension level. This
function should create or destroy an instance of your user object as
specified by a passed boolean argument. For example,
of_SetAutoRowInsert might create or destroy an instance of
n_cst_dwsrv_autorowinsert as follows:

// Function name: of_SetAutoRowInsert
// Arguments: ab_switch (boolean by value)
// Returns: 1 = Success
// 0 = Already instantiated
// -1 = Argument was NULL
IF IsNull(ab_switch) THEN
 Return -1
END IF
IF ab_switch THEN
 IF IsNull(inv_autorowinsert) OR &
 NOT IsValid(inv_autorowinsert) THEN
 inv_autorowinsert = CREATE n_cst_autorowinsert
 // of_SetRequestor = defined in ancestor
 inv_autorowinsert.of_SetRequestor(this)
 Return 1
 END IF
ELSE
 IF IsValid(inv_autorowinsert) THEN
 DESTROY inv_autorowinsert
 Return 1
 END IF
END IF
Return 0

6 Add code to the Destructor event of the main object in the intermediate
extension level. This code should destroy your user object:

this.of_SetAutoRowInsert(FALSE)

Defining a new service

26 PowerBuilder

7 Add code as necessary to events in the main object. This code should call
events on the service object, if enabled. For example, the automatic row
insertion service might add the following code to the RowFocusChanging
event:

IF IsValid(inv_autorowinsert) THEN
 inv_autorowinsert.Event corp_FocusChanging &
 (currentrow, newrow)
END IF

v To define an aggregate service:

1 Create a custom class user object that contains the necessary instance
variables, functions, and events. Optionally assign the AutoInstantiate
property to this object.

2 Save this user object in the intermediate extension level.

3 Create a descendent user object in the extension level. Add no code to this
object.

4 Use this object in event and function scripts as necessary. Reference
variables for this object should use the data type of the extension level
object.

P A R T 3 PFC Programming

This part explains how to program using PFC and PFC
services.

This part is for application developers.

PFC Library User’s Guide 29

C H A P T E R 3 PFC Programming Basics

About this chapter This chapter explains basic PFC programming practices and tells you how
to get started with a PFC application.

Assumptions
This chapter and all remaining chapters in this manual assume an
intermediate extension level strategy, which allows the developer to
modify and extend objects in the PFC extension level.

Contents

Setting up the application manager
The first step in creating an application with PFC is configuring and
enabling the application manager, n_cst_appmanager. Within the
application manager, you code logic that would otherwise be in the
Application object.

The application manager also has instance variables and functions to
maintain application attributes, such as the frame window, application and
user INI files or registry keys, and the application Help file.

Topic Page

Setting up the application manager 29

Building applications 33

Using attribute objects 38

Using PFC constants 40

The message router 41

Transaction management with PFC 43

Calling ancestor functions and events 45

Adding online Help to an application 46

Installing PFC upgrades 47

Setting up the application manager

30 PowerBuilder

v To set up the application manager:

1 Define an application target library list that contains PFC PBLs:

PFCAPSRV.PBL
PFCDWSRV.PBL
PFCMAIN.PBL
PFCUTIL.PBL
PFCWNSRV.PBL
PFEAPSRV.PBL
PFEDWSRV.PBL
PFEMAIN.PBL
PFEUTIL.PBL
PFEWNSRV.PBL

PFCOLD.PBL
If your application uses obsolete PFC objects from a previous release of
PFC, include PFCOLD.PBL in the library list.

2 From the Application painter, display the Variable view and declare a
global variable, gnv_app, of type n_cst_appmanager:

n_cst_appmanager gnv_app

The variable name must be gnv_app
PFC objects, functions, and events require that you define the application
manager as gnv_app, with a data type of n_cst_appmanager (or an
n_cst_appmanager descendant).

3 In the painter Script view, add PowerScript code to your application’s
Open event to create n_cst_appmanager and call the pfc_Open event:

gnv_app = CREATE n_cst_appmanager
gnv_app.Event pfc_Open(commandline)

4 Add code to your application’s Close event to call the pfc_Close event and
destroy n_cst_appmanager:

gnv_app.Event pfc_Close()
DESTROY gnv_app

5 Add code to your application’s SystemError event to call the
pfc_SystemError event:

gnv_app.Event pfc_SystemError()

6 Close the Application painter and save the changes.

CHAPTER 3 PFC Programming Basics

PFC Library User’s Guide 31

7 Display the User Object painter and open n_cst_appmanager, found in
PFEAPSRV.PBL. (Optionally, use an application-specific descendant of
n_cst_appmanager.)

8 Call n_cst_appmanager functions in the Constructor event to initialize
instance variables for version, company, and INI file.

9 Call n_cst_appmanager functions in the pfc_Open event to enable the
application services you want:

10 Add code to the pfc_Open user event to open your application’s initial
window (typically the frame window), optionally including a call to the
of_Splash function, which displays a splash screen.

11 (Optional) Add code to the pfc_PreAbout, pfc_PreLogonDlg, and
pfc_PreSplash events to customize elements of the About box, logon
dialog box, and splash screen.

12 (Optional) Add code to the pfc_Idle, pfc_ConnectionBegin, and
pfc_ConnectionEnd events. If so:

• Call pfc_Idle from the application’s Idle event.

• Call pfc_ConnectionBegin from the application’s ConnectionBegin
event.

• Call pfc_ConnectionEnd from the application’s ConnectionEnd
event.

13 Save n_cst_appmanager.

v To display a splash screen:

• Call the of_Splash function just before opening the initial window in the
pfc_Open event:

this.of_Splash(1)
Open(w_tut_frame)

To enable this service Call this function

Application preference of_SetAppPreference

DataWindow caching of_SetDWCache

Error of_SetError

Most recently used object of_SetMRU

Transaction registration of_SetTrRegistration

Security of_SetSecurity

Debug of_SetDebug

Setting up the application manager

32 PowerBuilder

v To display a logon screen:

1 Call the of_LogonDlg in the frame window’s Open event:

Integer li_return
li_return = gnv_app.of_LogonDlg()
IF li_return = 1 THEN

this.SetMicroHelp("Logon successful")
ELSE

MessageBox("Logon", "Logon failed")
Close(this)

END IF

Of_LogonDlg displays the w_logon dialog box, which prompts for user
ID and password and calls the n_cst_appmanager pfc_Logon event when
the user clicks OK.

Alternatively, you can call the of_LogonDlg function in the
n_cst_appmanager pfc_Open event, immediately after opening the frame
window. Do not call of_LogonDlg immediately after calling of_Splash.

2 Add script to the n_cst_appmanager pfc_Logon event to log the user on to
the database. This example assumes an INI file that contains all
information except user ID and password; it also assumes you’ve
associated SQLCA with n_tr, PFC’s customized Transaction object:

Integer li_return
String ls_inifile, ls_userid, ls_password

ls_inifile = gnv_app.of_GetAppIniFile()
IF SQLCA.of_Init(ls_inifile,"Database") = -1 THEN

Return -1
END IF
// as_userid and as_password are arguments
// to the pfc_Logon event
SQLCA.of_SetUser(as_userid, as_password)
IF SQLCA.of_Connect() = -1 THEN

Return -1
ELSE

gnv_app.of_SetUserID(as_userid)
Return 1

END IF

CHAPTER 3 PFC Programming Basics

PFC Library User’s Guide 33

Building applications
Building MDI
applications

To build an MDI application with PFC, use the w_frame and w_sheet windows
as the ancestors for your frame and sheet windows. To define events, functions,
and instance variables for all your application’s sheets, add them to w_sheet.

You must also define menu items for all sheet windows in an ancestor sheet
menu (m_master, m_frame, or an application-specific sheet-menu ancestor,
depending on your menu strategy).

For information on the strategies you can use to implement menus under PFC,
see “Using menus with PFC” on page 201.

v To build an MDI application with PFC:

1 Add application-specific modifications to w_frame, optionally creating a
frame window that inherits from w_frame.

2 (Optional) Add ancestor instance variables, functions, and user events to
w_sheet.

3 Create sheet windows that inherit from w_sheet.

4 Create a frame menu according to your menu strategy, optionally using
m_frame, PFC’s frame menu.

5 Associate the frame window with the customized frame menu.

6 Create sheet menus according to your menu strategy.

7 Associate sheet windows with sheet menus.

8 Open the frame window in the n_cst_appmanager pfc_Open user event.

9 (Optional) Enable frame window services as necessary:

• Enable the status bar service by calling the w_frame of_SetStatusBar
function

• Enable the sheet manager service by calling the w_frame
of_SetSheetManager function

v To open sheet windows in an MDI application:

1 Add code to the Clicked event for the menu items that open sheet
windows. This code should assign the sheet window name to
Message.StringParm and call the of_SendMessage function, passing the
pfc_Open event name:

n_cst_menu lnv_menu

Building applications

34 PowerBuilder

Message.StringParm = "w_products"
lnv_menu.of_SendMessage(this, "pfc_Open")

2 Add code to the w_frame pfc_Open event that accesses
Message.StringParm and opens the specified sheet window:

String ls_sheet
w_sheet lw_sheet

ls_sheet = Message.StringParm
OpenSheet(lw_sheet, ls_sheet, this, 0, Layered!)

Building SDI
applications

To build an SDI application with PFC, use the w_main window as the ancestor
for your main windows. To implement events, functions, and instance variables
so they are available in all windows, add them to w_main.

If your windows use menus, you must also define menus for each window.

For information on the strategies you can use to implement menus under PFC,
see “Using menus with PFC” on page 201.

v To build an SDI application with PFC:

1 Create a main window that inherits from w_main, optionally modifying
w_main directly.

2 Create a main menu according to your menu strategy.

3 Create additional windows and menus as appropriate.

4 Open the main window in the n_cst_appmanager pfc_Open user event.

Programming using
PFC functions

Almost all PFC functions are object functions. This means they are defined
within a PowerBuilder object (Window, Menu, or user object). Encapsulating
functions within a PowerBuilder object enables you to quickly see which
functions apply to the object.

PFC uses the Set/Get/Is naming convention to control access to instance
variables:

• of_Set functions allow you to set the value of an instance variable

• of_Get functions allow you to access a nonboolean instance variable

• of_Is functions allow you to determine the state of a boolean instance
variable

CHAPTER 3 PFC Programming Basics

PFC Library User’s Guide 35

Other types of instance variable access
PFC also declares certain instance variables as public, allowing you to access
them directly. Additionally, some variables are for internal use only and are not
accessible via function call.

In addition to the Set/Get/Is convention, PFC uses a Register/UnRegister
convention when defining a set of entities to be affected by a service. For
example, you call the u_calculator object’s of_Register function to define the
DataWindow columns that use a drop-down calculator.

Object qualification PFC uses access levels (public, private, protected) to
control your access to functions designed for internal use.

When you call these functions from outside the object, use dot notation to
qualify the function name. Qualify the function name with the reference
variable used to create the object (in some cases you qualify the function name
with the actual object name).

v To call PFC object functions:

1 Ensure that the object has been created.

PowerBuilder creates windows, menus, and visual user objects when the
window opens. You create most class user objects using an
of_Setservicename function (defined in u_dw, n_cst_appmanager,
w_master, or u_dw).

For example, the following u_dw object function creates the sort service
(n_cst_dwsrv_sort user object) and saves a reference to it in u_dw’s
inv_sort instance variable. You typically code these functions in the
DataWindow’s Constructor event:

this.of_SetSort(TRUE)

Autoinstantiated objects
Certain PFC objects use PowerBuilder’s autoinstantiate feature. These
objects have no Set functions; PowerBuilder instantiates them
automatically when you declare them as variables.

2 Call object functions from your application, as appropriate.

This example specifies that the sort service will use DataWindow column
header names, sort on displayed values, implement point-and-click
sorting, and display a drag-drop style dialog box when the user selects
View>Sort from the menu bar:

Building applications

36 PowerBuilder

this.inv_sort.of_SetColumnNameSource &
(this.inv_sort.HEADER)

this.inv_sort.of_SetUseDisplay(TRUE)
this.inv_sort.of_SetColumnHeader(TRUE)
this.inv_sort.of_SetStyle &

(this.inv_sort.DRAGDROP)

Function overloading PFC uses function overloading to provide a rich,
flexible application programming interface. It implements function
overloading in two ways:

• Multiple syntaxes Multiple functions contain arguments that use
different data types or are in a different order. This allows PFC to handle
many types of data in function arguments

• Optional arguments Multiple functions contain an increasing number
of arguments with the same data types and in the same order. This allows
PFC to provide defaults for commonly used arguments

Overloaded functions for internal use only
In addition to a series of Public overloaded functions, PFC often provides a
Protected version, which the other versions call internally. For example, the
n_cst_dwsrv_report of_AddLine function has four Public versions, and one
Protected version that is called by the other four. Although you can call
Protected versions in some cases, they are intended for internal use only and
are subject to change.

Programming using
PFC events

PFC includes precoded events and user events, which perform processing to
implement PFC services. It also includes empty user events, which allow you
to add application-specific code to perform application-specific tasks.

All events have public access and you can use dot notation to call them.

Using precoded
events and user
events

PFC includes extensive precoded functionality. This means that by enabling a
PFC service, PFC objects detect the enabled service and perform the
processing defined in the precoded events.

An example of a precoded event is the u_dw Clicked event, which calls certain
DataWindow service functions if they are enabled.

You can extend these events; do not override them.

For information on accessing the return value from an ancestor event, see
“Calling ancestor functions and events” on page 45.

CHAPTER 3 PFC Programming Basics

PFC Library User’s Guide 37

Using empty user
events

PFC includes empty user events into which you can add application-specific
code. Many of these events are triggered by menu items, using the message
router. Others are meant to be triggered by application-specific code.

An example of an empty user event is the u_dw pfc_Retrieve event, to which
you add logic that retrieves rows:

Return this.Retrieve()

For complete information on PFC user events, see the PFC Object Reference.

How PFC uses events When using events in the context of services, PFC typically behaves as
follows:

1 Within the event on the requestor object, call the corresponding event on
the service object, passing arguments as appropriate. For example, the
u_dw Clicked event calls the n_cst_dwsrv_sort pfc_Clicked event,
passing the x position, y position, row, and DW object (that is, the
arguments to the DataWindow Clicked event).

2 The event on the service object performs the required action, calling other
object functions as appropriate. For example, the n_cst_dwsrv_sort
pfc_Clicked event performs extensive processing, including calls to
n_cst_dwsrv_sort functions.

Use the events
Although you can usually call PFC object functions directly, it’s easier to call
the corresponding events since they already contain error checking.

Using PFC pre-event
processes

PFC includes many pre-event processes, to which you add code that
customizes or extends the functionality of the associated event. For example,
you add code to the pfc_PreRMBMenu event to control the items that appear
in a pop-up menu. Other events that feature pre-event processing include:

pfc_PreAbout
pfc_PreClose
pfc_PreLogonDlg
pfc_PreOpen
pfc_PrePageSetupDlg
pfc_PrePrintDlg
pfc_PreRestoreRow
pfc_PreSplash
pfc_PreToolbar
pfc_PreUpdate

Using attribute objects

38 PowerBuilder

Typically, these events are passed an autoinstantiated user object by reference.
This user object contains properties used to control processing in the associated
event. You modify user object properties to modify or extend processing. In
some cases, you will need to modify additional objects. For example, to control
the display of an additional field in the About box, you might:

1 Extend the n_cst_aboutattrib user object by adding an instance variable
that contains the value to be displayed in the w_about window (a user ID
in the example ahead).

2 Add the field to the w_about window (sle_userid in the example ahead).

3 Add code to the w_about Open event that accesses the n_cst_aboutattrib
user object (available as the inv_aboutattrib instance variable) and copies
the user ID to the SingleLineEdit:

sle_userid.text = inv_aboutattrib.is_userid

4 Add code to the n_cst_appmanager pfc_PreAbout event to initialize the
value:

anv_aboutattrib.is_userid = this.of_GetUserID()

To display w_about, call the application manager of_About function.

Using attribute objects
PFC provides a number of attribute-only user objects. These user objects:

• Contain public instance variables

• Are autoinstantiated

• Have names that end with attrib

• Are often used to pass information to PFC pre-event processes, such as
pfc_PreAbout

• Are extensible (you can define additional instance variables)

Because you can extend these objects, PFC uses them instead of structures.

In addition to defining additional public instance variables, you can also use
access levels and object functions to further customize the object’s behavior.

Attribute objects include:

CHAPTER 3 PFC Programming Basics

PFC Library User’s Guide 39

Attribute object Associated with Usage

n_cst_aboutattrib Pfc_PreAbout
(n_cst_appmanager)

Open w_about by calling the
n_cst_appmanager of_About
function

n_cst_calculatorattrib Constructor (u_calculator) Internal

n_cst_calendarattrib Constructor (u_calendar) Internal

n_cst_columnattrib ListView data access objects Set with of_
RegisterReportColumn

n_cst_dberrorattrib Logical unit of work service
(n_cst_luw)

Internal

n_cst_dirattrib File service objects Internal

n_cst_dssrv_multitableattrib DataStore multitable update
service

Internal

n_cst_dwcacheattrib Caching service Internal

n_cst_dwobjectattrib Of_Describe (n_cst_dssrv and
n_cst_dwsrv)

Of_Describe returns DataWindow
properties in this object

n_cst_dwpropertyattrib DataWindow Properties objects Internal

n_cst_dwsrv_dropdownsearchattrib Search service for
DropDownDataWindows and
DropDownListBoxes

Internal

n_cst_dwsrv_multitableattrib DataWindow multitable update
service

Internal

n_cst_dwsrv_querymodeattrib Service to enable or disable query
mode

Internal

n_cst_dwsrv_resizeattrib DataWindow resize service Set with n_cst_dwsrv_
resize of_register function

n_cst_errorattrib Error message service Used to pass display information
to w_message

n_cst_filterattrib DataWindow filter service Used to pass information to filter
dialog boxes

n_cst_findattrib DataWindow find service Used to pass information to Find
dialog box

n_cst_infoattrib DataWindow Properties objects Internal

n_cst_itemattrib PFC ListBox, PictureListBox, and
TreeView

Internal

n_cst_linkageattrib DataWindow linkage service Internal

n_cst_logonattrib Pfc_PreLogonDlg
(n_cst_appmanager)

Open w_logon by calling the
n_cst_appmanager of_LogonDlg
function

n_cst_lvsrvattrib ListView data access objects Set with of_Register

Using PFC constants

40 PowerBuilder

Using PFC constants
Many PFC objects include instance variables that are declared as constants.
You can use these instance variables to create more readable code. For
example, both of the following functions set the DataWindow linkage style, but
the second is easier to understand:

n_cst_mruattrib MRU service Use in the window’s
pfc_MRUProcess and
pfc_PreMRUSave events

n_cst_propertyattrib DataWindow Properties objects Internal

n_cst_resizeattrib Resize service Internal

n_cst_restorerowattrib DataWindow row manager
service

Internal

n_cst_returnattrib DataWindow filter and sort
services

Internal

n_cst_selectionattrib Selection service Populated with arguments to the
n_cst_selection of_Open function

n_cst_sortattrib DataWindow sort service Used to pass information to the
sort dialog boxes

n_cst_splashattrib Pfc_PreSplash event
(n_cst_appmanager)

Open w_splash by calling the
n_cst_appmanager of_Splash
function

n_cst_sqlattrib SQL service Contains the components of a
SQL SELECT statement

n_cst_textstyleattrib PFC RichTextEdit control Use to get and set text properties
(bold, italic, and so on)

n_cst_tmgregisterattrib Timing service Internal

n_cst_toolbarattrib Pfc_PreToolbars event (w_frame) Open w_toolbars by calling the
w_frame pfc_Toolbars event

n_cst_trregistrationattrib Transaction registration service Used to track Transaction objects

n_cst_tvattrib TreeView service Internal

n_cst_tvsrvattrib TreeView data access object Set with of_Register

n_cst_winsrv_sheetmanagerattrib Sheet management service Internal

n_cst_winsrv_statusbarattrib Status bar service Internal

n_cst_zoomattrib DataWindow print preview
service

Internal

Attribute object Associated with Usage

CHAPTER 3 PFC Programming Basics

PFC Library User’s Guide 41

// 1 = Filter linkage style.
dw_emp.inv_linkage.of_SetStyle(1)

// FILTER is a constant instance variable
// that is initialized to 1.
dw_emp.inv_linkage.of_SetStyle &
 (dw_emp.inv_linkage.FILTER)

Coding conventions
The PFC convention is to code constants in all caps.

The message router
PFC uses a message router to handle communication between menus and
windows. This customized message-passing mechanism is built into all PFC
menus and windows.

Using the message
router

Although you can use the message router to communicate between any object
and a window, it is typically used to pass messages from menus to windows. It
implements a customized searching algorithm to determine the appropriate
object to receive the message.

By using the message router:

• Your menu script only needs to know the user event to call; it doesn’t need
to know the current window or the associated control name.

• Your windows do not need to maintain user events that simply call
DataWindow user events. This reduces the number of user events
maintained by the window.

Message = user event
The message passed by a message router function is actually a string
containing the name of a user event to be triggered by the window or one of its
controls.

Built-in debugging
messages

The message router includes built-in debugging messages to provide error
information.

The message router

42 PowerBuilder

How
of_SendMessage
works

When the user selects a menu item, the item’s Clicked event script calls the
menu’s of_SendMessage function, passing the name of the user event to be
called. Of_SendMessage calls the n_cst_menu of_SendMessage function,
which calls the window’s pfc_MessageRouter event, which in turn calls the
specified user event.

Of_SendMessage calls the pfc_MessageRouter user event differently
depending on whether the application is MDI or SDI:

How pfc_
MessageRouter works

The pfc_MessageRouter user event calls the passed user event in the window,
the active control, and the last active DataWindow:

CHAPTER 3 PFC Programming Basics

PFC Library User’s Guide 43

Pass messages between menus and windows
The message router is primarily a mechanism to communicate between menus
and windows. Except for CommandButtons inside DataWindows, you cannot
use buttons to call the pfc_MessageRouter event. This is because the message
routine calls the GetFocus event to access the current control, which, after you
click a CommandButton, is the button itself.

Transaction management with PFC
One of PowerBuilder’s key strengths is its ability to access a variety of DBMSs
quickly and easily. PowerBuilder uses the transaction object as a
communications area between PowerScript and the database. SQLCA is the
default PowerBuilder Transaction object.

The n_tr user object PFC includes the n_tr user object. N_tr is a customized Transaction object that
inherits from the Transaction system object. This customized Transaction
object includes instance variables, events, and functions to encapsulate and
extend database communication.

N_tr helps you manage transactions by providing a standard set of functions for
performing database connects, disconnects, commits, and rollbacks. Use n_tr
functions instead of native SQL transaction management statements. For
example, to connect to the database, use of_Connect instead of the CONNECT
statement.

Two ways to use n_tr You use n_tr in two ways:

• As a replacement for SQLCA Use the Application painter’s Properties
dialog box to specify that the default SQLCA will be of data type n_tr

• In addition to SQLCA Define an instance variable of type n_tr and
create it programmatically

If your application requires more than one Transaction object, you will use
both of these methods.

If using more than one Transaction object, you can use the transaction
registration service to perform functions such as committing all open
transactions or rolling back all open transactions.

See Chapter 4, “Using PFC Services”.

Transaction management with PFC

44 PowerBuilder

v To associate n_tr with SQLCA:

1 Access the Application painter.

2 Display the Properties view, click the Additional Properties button and
select the Variable Types tab.

3 Type n_tr in the SQLCA box.

4 Click OK.

v To use n_tr:

1 If you are using a Transaction object other than SQLCA, create it.

 This example assumes an itr_security instance variable of type n_tr.

itr_security = CREATE n_tr

2 Initialize the ib_autorollback instance variable, which specifies what to do
if the application closes (or the object is otherwise destroyed) while the
transaction is still connected:

itr_security.of_SetAutoRollback(FALSE)

Initialize ib_autorollback in the extension level
You can enforce transaction consistency by initializing ib_autorollback in
the n_tr Constructor event.

3 Initialize Transaction object fields using the of_Init function:

String ls_inifile

ls_inifile = gnv_app.of_GetAppIniFile()
IF SQLCA.of_Init(ls_inifile,"Database") = -1 THEN

MessageBox("Database", &
"Error initializing from " + ls_inifile)

HALT CLOSE
END IF

4 Connect to the database by calling the of_Connect function:

IF SQLCA.of_Connect() = -1 THEN
MessageBox("Database", &

"Unable to connect using " + ls_inifile)
HALT CLOSE

CHAPTER 3 PFC Programming Basics

PFC Library User’s Guide 45

ELSE
gnv_app.of_GetFrame().SetMicroHelp &

("Connection complete")
END IF

5 Call n_tr functions as needed.

Calling ancestor functions and events
In extending ancestor functions and events, you may need to call the ancestor
method and continue processing based on its return value. This is especially
important when extending PFC events (those that begin with the pfc_ prefix)
that use return codes. You must check the return code to ensure that ancestor
processing succeeded before performing descendent processing.

Overriding ancestor events
To extend a PFC event that uses a return code, you must override the event and
call the ancestor event explicitly, as shown in this discussion.

Use the following syntax to call an ancestor event, passing arguments and
receiving a return code:result = Super::Event eventname (arguments ...)

Use the following syntax to call an ancestor function, passing arguments and
receiving a return code:result = Super::Function functionname (arguments ...)

This example overrides the u_dw pfc_Update event, writing to an update log if
the ancestor event processes successfully:

Integer li_return

// Call ancestor event, passing
// descendant's arguments.
li_return = Super::Event pfc_Update &

(ab_accepttext, ab_resetflag)
IF li_return = 1 THEN

// ue_WriteLog is a user-defined event.
li_return = this.Event ue_WriteLog

END IF
Return li_return

Adding online Help to an application

46 PowerBuilder

Adding online Help to an application
Online Help is an important part of any application. PFC provides functions
and events to enable online Help in your application.

For information on PFC dialog Help, see “Deploying PFC dialog box Help”
on page 230.

v To enable online Help in a PFC application:

1 Within n_cst_appmanager or a descendant, you can use the Properties
view to assign the complete name of the Help file to the is_helpfile
instance variable.

Alternatively, you can call the of_SetHelpFile function to establish the
Help filename. You usually do this in the Constructor event:

this.of_SetHelpFile("c:\eis\eisapp.hlp")

2 Specify the Help topic associated with the window. The pfc_PreOpen
event is a good place for this:

Long ll_helpid

ll_helpid = 1020 // 1020 is a Help topic ID
ia_helptypeid = ll_helpid

This allows you to provide detailed online Help for selected windows. You
can set ia_helptypeid to either a long (which PFC interprets as a Help topic
ID) or a string (which PFC interprets as a search keyword).

3 (Optional) If you are not using a descendant of PFC’s m_master menu, add
calls to the window’s pfc_Help user event in your menu’s Help menu
items. Pfc_Help is defined in w_master so it is available in all PFC
windows.

4 For dialog boxes, call the pfc_Help user event in the Help button’s Clicked
event:

Parent.Event pfc_Help()

PFC handles window-level Help automatically
The message router calls the active window’s pfc_Help user event when
the user selects Help>Help Topics from the menu bar of a menu descended
from m_master.

CHAPTER 3 PFC Programming Basics

PFC Library User’s Guide 47

Installing PFC upgrades
Sybase distributes regular maintenance releases between major PowerBuilder
releases. In addition to PowerBuilder updates, each maintenance release also
includes updates to PFC. The way you apply PFC maintenance depends on
your PFC usage:

• No modifications to either PFC level If there is no modification to
either the PFC ancestor level or the PFC extension level, you can simply
install the new set of PBLs over the existing PBLs

Always make a backup copy
Always make a backup copy of all PFC PBLs before installing updated
PBLs. These instructions assume that you have made a backup.

• One or more intermediate extension levels or developer code in the
PFC extension level If you have changed any of the levels below the
PFC ancestor level, you must ensure that extensions and other
modifications are not overwritten, as described in the discussion below.

v To upgrade to the latest PFC release:

1 Move all extension-level PBLs to a directory that will not be overwritten
by the install procedure.

PFC ancestor objects
You should never modify PFC ancestor objects (objects with the pfc_
prefix). These instructions assume no modifications have been made to
PFC ancestor objects.

2 Determine your current version. You can find the current version at the top
of the current PFC readme.txt file or in instance variables defined in
pfc_n_cst_debug. The version is in the format
majorrevision.minorrevision.fixesrevision.

3 Run the install procedure, placing the PFC PBLs in the current PFC
directory and overwriting the current PFC ancestor PBLs.

Installing PFC upgrades

48 PowerBuilder

4 Merge existing extension objects with new extension objects. Review the
newly installed readme.txt file to see a list of new extension objects. There
are two methods of merging existing extension objects with new extension
objects:

• Copy new objects to customized extension PBLs Copy each
new object from the newly installed PFC extension level PBL to your
customized extension PBL. Then copy the customized extension
PBLs back to their original directory, overwriting the newly installed
PFC extension PBLs.

• Copy existing objects to the new PFC extension PBL Copy all
objects from the customized extension PBLs to the appropriate newly
installed PFC extension PBL.

5 Start PowerBuilder.

6 Adjust the application target library list if necessary.

7 Perform a full rebuild of the target.

PFC Library User’s Guide 49

C H A P T E R 4 Using PFC Services

About this chapter This chapter explains PFC services and how to use them.

Contents

Application services
PFC provides the following application services:

DataWindow caching
Debugging
Error
Application preference
Most recently used object

Topic Page

Application services 49

DataWindow services 63

Window services 89

Menu service 95

Resize service 96

Conversion service 98

Date/Time service 99

File service 101

INI file service 102

Numerical service 103

Platform service 105

Selection service 106

SQL parsing service 108

String-handling service 109

Metaclass service 111

Logical unit of work service 111

List service 114

Timing service 126

Application services

50 PowerBuilder

Security
Transaction registration

You control application services through n_cst_appmanager, the application
manager. Use application manager functions to enable and disable application
services. Because they are scoped to the application manager, which you define
as a global variable, application services are available from anywhere within
your application.

DataWindow caching service
Overview The DataWindow caching service buffers data for DataWindow objects. By

keeping rows in memory, the DataWindow caching service helps to reduce
database access, optimizing application performance. The DataWindow
caching service supports the following data sources:

• DataWindow object (using either data retrieved from the database or data
stored with the DataWindow object)

• SQL statement

• DataWindow control

• DataStore control

• Rows from an array

• A file

The DataWindow caching service uses PowerBuilder DataStores to buffer
data.

PFC enables DataWindow caching through the n_cst_dwcache user object.

PFC code is in ancestor-level objects
This book always refers to extension-level objects (such as n_cst_dwcache).
All PFC code is actually in ancestor-level objects (such as
pfc_n_cst_dwcache).

Usage Use DataWindow caching to minimize database access and optimize
performance.

v To enable DataWindow caching:

• Call the n_cst_appmanager of_SetDWCache function:

gnv_app.of_SetDWCache(TRUE)

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 51

v To use DataWindow caching:

1 Cache data by calling the of_Register function, passing different
arguments depending on the data to be cached:

• To cache rows retrieved from the database via a DataWindow object,
pass an identifier, a Transaction object, the DataWindow object name,
and arguments if any

• To cache rows retrieved from the database via a SQL statement, pass
an identifier, a Transaction object, and the SQL statement

• To cache rows in an array, pass an identifier, the DataWindow object
name, and the data

• To cache rows from a DataWindow control, pass an identifier and the
DataWindow control

• To cache rows from a DataStore, pass an identifier and the DataStore
instance

• To cache rows from a file, pass an identifier and the filename

2 To determine if a DataWindow object is already registered with the
caching service, call the of_IsRegistered function, passing the object’s
identifier.

3 To access cached data from, call the of_GetRegistered function. This
example assumes an ids_datastore instance variable:

gnv_app.inv_dwcache.of_GetRegistered &
("d_emplist", ids_datastore)

ids_datastore.ShareData(dw_emplist)

4 To re-retrieve data for a cached DataWindow, call the of_Refresh function.

5 To stop caching, call the of_UnRegister function.

6 (Optional) Disable the DataWindow caching service by calling the
n_cst_appmanager of_SetDWCache function:

gnv_app.of_SetDWCache(FALSE)

In most cases, you do not disable DataWindow caching explicitly. PFC
destroys n_cst_dwcache automatically when your application shuts down.

Application services

52 PowerBuilder

Debugging service
Overview The debugging service automatically displays messages when PFC encounters

conditions that indicate an error.

The PFC message router uses the debugging service to control the display of
error messages when a passed event does not exist.

Development tool only
The PFC debugging service is a development tool only. Do not enable it in
production applications.

Usage Use the debugging service to help you solve problems in the PFC development
environment.

v To use the debugging service:

1 Enable the debugging service by calling the n_cst_appmanager
of_SetDebug function:

gnv_app.of_SetDebug(TRUE)

2 PFC objects check for the target’s debugging status and, in certain
conditions, display error messages.

3 (Optional) Disable the debugging service by calling the
n_cst_appmanager of_SetDebug function:

gnv_app.of_SetDebug(FALSE)

In most cases, you do not disable the debugging service explicitly.

For information on SQL Spy and the DataWindow Property window (two
debugging utilities supplied with PFC) see Chapter 7, “PFC Utilities”.

Application preference service
Overview You use the application preference service to save and restore application and

user information using either an INI file or the Windows registry. Saving and
loading application settings has two advantages:

• Persistence By saving application state, users don’t have to reset their
application preferences each time they start the application

• Ease of maintenance By externalizing application settings, you can
update application settings without updating code in n_cst_appmanager

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 53

PFC enables the application preference service through the
n_cst_apppreference user object.

This service saves the following application information:

User key
MicroHelp
Help file
Version
Logo bitmap
Copyright notice
DDETimeOut property
DisplayName property
DWMessageTitle property
MicrohelpDefault property
RightToLeft property
ToolbarFrameTitle property
ToolbarPopMenuText property
ToolbarSheetTitle property
ToolbarUserControl property

The application preference service can also save the following user
information:

ToolbarText property
ToolbarTips property
User ID

Saving and loading
settings

The application preference service automatically loads settings when the
application opens and stores them when the application closes. This
information is stored in either the registry (available on Windows) or an INI file
(available on all platforms), which you specify as follows:

• Registry Call the of_SetUserKey function, specifying the registry key
that contains application preference information.

• INI file Call the of_SetUserINIFile function, specifying the INI file that
contains application preference information.

v To use the application preference service:

1 Enable the application preference service by calling the
n_cst_appmanager of_SetAppPref function:

gnv_app.of_SetAppPref(TRUE)

Application services

54 PowerBuilder

2 Specify the platform-specific repository for application preferences. This
example from an application manager Constructor event saves application
preferences in the registry or INI file, depending on the execution
platform. It assumes you’ve already established n_cst_appmanager
specifications for application key, user key, application INI file, and user
INI file:

IF this.of_IsRegistryAvailable() THEN
this.inv_apppref.of_SetAppKey &

 (this.of_GetAppKey())
this.inv_apppref.of_SetUserKey &

 (this.of_GetUserKey())
ELSE

this.inv_apppref.of_SetAppINIFile &
 (this.of_GetAppINIFile())

this.inv_apppref.of_SetUserINIFile &
 (this.of_GetUserINIFile())
END IF

3 Specify the types of information to save by calling the of_SetRestoreApp
and of_SetRestoreUser functions:

this.inv_apppref.of_SetRestoreApp(TRUE)
this.inv_apppref.of_SetRestoreUser(TRUE)

Most recently used object service
Overview You use the most recently used (MRU) object service to display a list of most

recently used windows on the File menu. By default this list displays up to five
items, but, you can increase this number.

PFC enables the MRU service through the n_cst_mru user object.

The MRU service automatically loads MRU information when the application
opens. The service saves information in either the registry (available on
Windows) or an INI file (available on all platforms), which you specify as
follows:

• Registry Call the of_SetUserKey function, specifying the registry key
that contains MRU information

• INI file Call the of_SetUserINIFile function, specifying the INI file that
contains MRU information

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 55

You must write
processing code

To use the MRU service, you must extend the following window events in all
windows that are to display on the file menu as MRU objects:

• Pfc_MRUProcess Add code that uses the passed MRU information to
open the specified window

• Pfc_PreMRUSave Add code that saves MRU information

• Pfc_MRURestore Add code that restores MRU information

Use IDs to identify
groups of windows

You specify IDs to identify windows or groups of windows that appear together
on the file menu. By using IDs you can restrict and customize MRU display.
For example, when displaying a particular sheet, you might want to restrict
MRU display to instances of that sheet only. In other applications, you might
want all sheets to display the same MRU items.

Integration with PFC
menus

The PFC m_master menu includes five MRU items at the end of the File menu.
You can add more MRU items if necessary.

If your application uses non-PFC menus, use m_master as a model in creating
your own MRU menu items.

v To use the MRU service:

1 Enable the MRU service by calling the n_cst_appmanager of_SetMRU
function:

gnv_app.of_SetMRU(TRUE)

2 Specify where MRU information is to be saved by calling either the
n_cst_mru of_SetUserKey function (on Windows platforms) or the
of_SetUserINIFile function (all platforms). This example from an
application manager Constructor event saves MRU information in the
registry or INI file. It assumes you’ve already established the
n_cst_appmanager user key or user INI file:

IF this.of_IsRegistryAvailable() THEN
this.inv_mru.of_SetUserKey &

 this.of_GetUserKey())
ELSE

this.inv_mru.of_SetUserINIFile &
 (this.of_GetUserINIFile())
END IF

Application services

56 PowerBuilder

3 Register IDs to be tracked by the MRU service by calling the n_cst_mru
of_Register function. (An ID is the identifier that the window uses to
retrieve information through the MRU service.) This is an example of code
you can add to the pfc_PreOpen event of the MDI frame window:

IF IsValid(gnv_app.inv_mru) THEN
gnv_app.inv_mru.of_Register("myapp")

END IF

4 Extend the pfc_MRUProcess event in each window that uses MRU
processing, adding code to open the window or sheet passing the necessary
arguments (be sure to add similar code to the frame window if you want to
specify MRU items on the frame menu):

Window lw_frame, lw_window
n_cst_menu lnv_menu
n_cst_mruattrib lnv_mruattrib

// Check parameters.
IF IsNull(ai_row) THEN

Return -1
END IF
IF NOT IsValid(gnv_app.inv_mru) THEN

Return -1
END IF
// Retrieve row from DataStore.
gnv_app.inv_mru.of_GetItem &
 (ai_row, lnv_mruattrib)
// Get the MDI frame, if necessary.
lnv_menu.of_GetMDIFrame(this.menuid, lw_frame)
OpenSheet(lw_window, &
 lnv_mruattrib.is_classname, lw_frame)
Return 1

Performing other actions in the pfc_MRUProcess event
To see other types of processing you can perform in the pfc_MRUProcess
event, see the comments in the pfc_w_master pfc_MRUProcess event.

5 Extend the pfc_PreMRUSave event in each window that uses the MRU
service. In this event, populate the n_cst_mruattrib object with the ID,
classname, key, item text, and MicroHelp to be saved:

anv_mruattrib.is_id = "myapp"
anv_mruattrib.is_classname = this.ClassName()
anv_mruattrib.is_menuitemname = this.Title
anv_mruattrib.is_menuitemkey = this.ClassName()

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 57

anv_mruattrib.is_menuitemmhelp = &
 "Opens " + this.Title
Return 1

6 Extend the pfc_MRURestore event in each window that uses the MRU
service. In this event, set the ID of the information you want to display on
the menu:

If IsValid(gnv_app.inv_mru) Then
 Return gnv_app.inv_mru.of_Restore("myapp", This)
End If

7 Call the pfc_MRUSave event to save MRU information. You can call this
event when the window opens, when information is saved, or when the
window closes (this example is from the pfc_PreOpen event):

this.Event pfc_MRUSave()

Error message service
Overview The error message service provides many features for displaying and logging

your application’s error messages. You can display messages in either the
PowerBuilder MessageBox or in the PFC w_message dialog box. Both display
options offer the following features:

• Message logging Message logging to a file, including multiplatform
support. PFC automatically logs messages whose severity is greater than
a specified level

• MAPI support Automatic error notification via e-mail (MAPI-
compliant e-mail systems only). PFC automatically sends e-mail
notification for messages whose severity is greater than a specified level

• Message database Access to a database of predefined messages (which
can reside in either a database or a file). Predefined messages provide
standardization of message text, elimination of duplicate messages, and
ease of localization

• Symbolic parameter replacement Messages can have arguments that
are replaced at execution time

• Unattended option Messages are logged (or e-mailed) but do not
display

Application services

58 PowerBuilder

If you use the w_message dialog box, you have additional options:

• User input and print buttons The user can print messages and can
optionally add comments (this is especially useful when logging messages
and when using the automatic e-mail notification feature)

• Automatic close The w_message dialog box will close automatically
after a specified number of seconds

W_message bitmaps
If you use the w_message dialog box, the bitmaps it uses must be available at
execution time.

Usage Use the error service to handle all of your application’s message and error
handling. If you are keeping messages in a database, you can either use the
messages tables in PFC.DB or pipe it to your application’s database.

Using the messages table
In most cases you should copy the messages table to your application’s
database. This table contains predefined PFC error messages as well as those
that you define.

v To use the error message service:

1 Create an instance of n_cst_error by calling the n_cst_appmanager
of_SetError function (this example is from an n_cst_appmanager
pfc_Open event):

this.of_SetError(TRUE)

2 Specify the error message source:

• If the source is a file, call the following function:

this.inv_error.of_SetPredefinedSource &
("c:\eisapp\eiserr.txt")

• If the source is a database, call the following function:

this.inv_error.of_SetPredefinedSource &
(itr_error)

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 59

The error message source
When using a file as the error message source, the file must contain all
rows found in the PFC.DB messages table; columns must be delimited by
tabs.

PFC uses predefined messages in certain situations. If you enable the error
message service and receive message display errors, make sure the error
message source has been established correctly.

Additional user-defined messages must conform to the format of the
messages table (also used by the d_definedmessages DataWindow object).

3 (Optional) Specify the name of the log file (to disable logging, call
of_SetLogFile passing an empty string):

this.inv_error.of_SetLogFile &
("c:\workingdir\errlog.txt")

4 (Optional) Specify the user ID (used in message logging):

this.inv_error.of_SetUser &
(this.of_GetUserID())

5 (Optional) Specify the types of messages for which the error service will
provide automatic notification and logging:

this.inv_error.of_SetNotifySeverity(5)
this.inv_error.of_SetLogSeverity(4)

6 (Optional) If your application uses the error service’s automatic
notification feature, specify the current user’s e-mail ID and password.
Also specify the e-mail IDs of the users to be notified automatically. This
example assumes a mechanism for storing e-mail IDs and user passwords:

this.inv_error.of_SetNotifyConnection &
(ims_mailsess)

this.inv_error.of_SetNotifyWho(is_autonotify)

N_cst_appmanager pfc_Open
The steps listed above can all be coded in the n_cst_appmanager pfc_Open
event.

Application services

60 PowerBuilder

7 In your application error checking, call the of_Message function to display
messages, with optional logging and notification. The of_Message
function allows you to either use the message database or specify message
text dynamically. This example uses the message database:

gnv_app.inv_error.of_Message &
("EIS0210")

v To use symbolic parameters (predefined messages only)

1 Define messages in the messages table. Type % to mark the places to be
replaced at runtime with symbolic parameters. For example:

EIS1030 Unable to find the file % in %

2 Create an array of replacement arguments:

String ls_parms[]

ls_parms[1] = "logfile.txt"
ls_parms[2] = "c:\windows\system"

3 Call of_Message, passing the array:

gnv_app.inv_error.of_Message("EIS1030", ls_parms)

PFC displays the message, replacing the first % with the first element in
the ls_parms array and the second % with the second element in the
ls_parms array.

Security service
Overview PFC’s security feature can handle many of your application’s security needs. It

includes administrative components and a runtime security object,
n_cst_security.

Usage To use the PFC security system, you must first define users and groups,
associate them with windows, menus, user objects, and controls, and then add
code to your application.

v To use the security service:

1 Define users and groups, as described in Chapter 7, “PFC Utilities”.

2 Define security for your application’s window controls, menus, user
objects, and controls, as described in Chapter 7, “PFC Utilities”.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 61

3 Create the security object by calling the n_cst_appmanager of_SetSecurity
function (this example is from an n_cst_appmanager pfc_Open event):

this.of_SetSecurity(TRUE)

4 Establish a Transaction object for the security database. This example
assumes an itr_sec instance variable of type n_tr on n_cst_appmanager:

itr_sec = CREATE n_tr
CONNECT using itr_sec;

5 Initialize the security object by calling the of_InitSecurity function:

this.inv_security.of_InitSecurity &
(itr_sec, "EISAPP", &

 gnv_app.of_GetUserID(), "Default")

N_cst_appmanager pfc_Open
The steps listed above can all be coded in the n_cst_appmanager pfc_Open
event.

6 Disconnect from the database and destroy the Transaction object when the
application closes. This example might be coded in the n_cst_appmanager
pfc_Close event:

DISCONNECT using itr_sec;
Destroy itr_sec

7 In the Open or pfc_PreOpen events of windows for which you want to
apply security, call the of_SetSecurity function:

IF NOT &
gnv_app.inv_security.of_SetSecurity(this) THEN
 MessageBox("Security", &
 "Unable to set security")
 Close(this)
END IF

Other places to call of_SetSecurity
You might also call the n_cst_security of_SetSecurity function from the
Constructor event of a DataWindow, visual user object, or menu for which
you want to implement security.

Application services

62 PowerBuilder

Transaction registration service
Overview The transaction registration service tracks the transaction objects used by your

application. This service is for use with Transaction objects based on n_tr.

PFC enables transaction registration through the n_cst_trregistration user
object.

Usage Use this service to keep track of transactions when your application uses more
than one transaction.

When your application closes, this object automatically destroys all open
registered transactions. Set the n_tr ib_autorollback instance variable to TRUE
to cause closing transactions to COMMIT; set ib_autorollback to FALSE to
cause a ROLLBACK. You set this instance variable with the n_tr
of_SetAutoRollback function.

v To enable the transaction registration service:

• Call the n_cst_appmanager of_SetTrRegistration function:

gnv_app.of_SetTrRegistration(TRUE)

The application manager destroys the transaction registration service
automatically when the application closes.

v To register a transaction:

• Call the n_cst_trregistration of_Register function:

gnv_app.inv_trregistration.of_Register(SQLCA)

v To control whether the transaction registration service commits or rolls
back open transactions when it is destroyed:

• Call the n_tr of_SetAutoRollback function:

SQLCA.of_SetAutoRollback(TRUE)

If you set autorollback to TRUE and the object is still connected, the
service rolls back open transactions when it is destroyed; if you set it to
FALSE, it commits open transactions. However, to ensure that
transactions close properly, your application should issue COMMITs,
ROLLBACKS, and DISCONNECTs explicitly.

v To establish a transaction name:

• Call the n_tr of_SetName function:

itr_security.of_SetName("Security")

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 63

v To close all transactions explicitly:

1 In the application manager pfc_Close event (or some other appropriate
place), call the n_cst_trregistration of_GetRegistered function:

n_tr ltr_trans[]
Integer li_max, li_count

li_max = &
 this.inv_trregistration.of_GetRegistered &
 (ltr_trans)

2 Loop through the n_tr array, committing and destroying transactions as
appropriate:

FOR li_count = 1 to li_max
COMMIT using ltr_trans[li_count];
DESTROY ltr_trans[li_count]
NEXT

DataWindow services
Most production-strength PowerBuilder applications make intense use of
DataWindow controls. PFC provides a wide variety of DataWindow services
that you can use to add production-strength features to an application. Many of
these services require little or no coding on your part.

PFC implements DataWindow services through a set of custom class user
objects that descend from a common ancestor. The ancestor object contains
functions, events, and instance variables that are required by multiple services.
Each DataWindow service contains additional functions, events, and instance
variables.

Accessing
DataWindow services

To access DataWindow services, you create DataWindow objects that are
based on the u_dw user object. U_dw contains:

• Functions to enable and disable DataWindow services

• Instance variables that allow you to reference each service’s functions,
events, and instance variables (this type of instance variable is called a
reference variable)

DataWindow services

64 PowerBuilder

• Precoded events and user events that call the DataWindow service’s
functions and events

• Empty user events to which you add code to perform application-specific
processing

Use u_dw for all DataWindow controls
Use the u_dw user object for all of your application’s DataWindow controls.

Enabling DataWindow
services

Each DataWindow control enables only the required DataWindow services.
This minimizes application overhead.

The following table lists DataWindow services and how they are implemented:

DataWindow services ancestor
Overview The DataWindow services ancestor contains instance variables, events, and

functions for use by all other DataWindow services. You can use many of the
ancestor functions too.

PFC enables basic DataWindow services through the n_cst_dwsrv user object.

DataWindow service Implementation

Basic DataWindow service (ancestor for
all other services)

n_cst_dwsrv

Drop-down search service n_cst_dwsrv_dropdownsearch

Filter service n_cst_dwsrv_filter

Find and replace service n_cst_dwsrv_find

Linkage service n_cst_dwsrv_linkage

Multitable update service n_cst_dwsrv_multitable

Print preview service n_cst_dwsrv_printpreview

DataWindow property service n_cst_dwsrv_property

Querymode service n_cst_dwsrv_querymode

Reporting service n_cst_dwsrv_report

Required column service n_cst_dwsrv_reqcolumn

DataWindow resize service n_cst_dwsrv_resize

Row management service n_cst_dwsrv_rowmanager

Row selection service n_cst_dwsrv_rowselection

Sort service n_cst_dwsrv_sort

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 65

DataStore services
This service is available to the n_ds DataStore via the n_cst_dssrv user object.

Usage Use this service for general DataWindow functionality, including:

• Getting and setting DataWindow information

• As an alternative to the Modify and Describe PowerScript functions

• DataWindow service defaults

Ancestor functions are available in the descendants
Because the n_cst_dwsrv user object is the ancestor for all DataWindow
services, its functions are also available through any of the descendent
DataWindow service user objects.

v To enable basic DataWindow services:

• Call the u_dw of_SetBase function:

dw_emplist.of_SetBase(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To access DataWindow information:

• Call one of the following n_cst_dwsrv functions:

Function When to call

of_Describe To access information on DataWindow attributes and
columns

of_GetHeaderName To determine the header name for a specified
DataWindow column

of_GetHeight To determine a column’s height

of_GetObjects To access the names of the objects within a
DataWindow

of_GetWidth To determine a column’s width

of_GetItem
of_GetItemAny

To retrieve data for a DataWindow column, regardless
of data type

DataWindow services

66 PowerBuilder

v To set DataWindow data:

• Call one of the following n_cst_dwsrv functions:

v To refresh all DropDownDataWindows in a DataWindow:

• Call the of_PopulateDDDWs function:

Integer li_return

li_return = &
dw_emplist.inv_base.of_PopulateDDDWs()

gnv_app.of_GetFrame().SetMicroHelp &
(String(li_return) + " DDDW columns

refreshed")

v To access DataWindow service defaults:

• Call one of the following n_cst_dwsrv functions:

Function When to call

of_Modify To set DataWindow attributes and columns

of_SetItem To set or modify the display value for a DataWindow column,
regardless of datatype

Function When to call

of_GetColumnDisplayName To determine when DataWindow services
display when referring to columns

of_GetColumnNameStyle To determine what DataWindow services
display when referring to columns

of_GetDefaultHeaderSuffix To determine the default DataWindow
suffix for header columns

of_GetDisplayItem
of_GetDisplayUnits

To determine the text displayed when
displaying CloseQuery message

of_SetColumnDisplayNameStyle To specify what DataWindow services
display when referring to columns:

• DataWindow column names

• Database column names

• DataWindow column header names

of_SetDefaultHeaderSuffix To specify the default DataWindow suffix
for header columns (_t is the default)

of_SetDisplayItem
of_SetDisplayUnits

To specify the text displayed when
displaying CloseQuery message

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 67

Drop-down DataWindow search service
Overview The PFC drop-down DataWindow search service automatically scrolls

drop-down DataWindows to items that begin with the typed letter. For
example, when a user types S in a drop-down DataWindow, this service
automatically scrolls the list to the first item that begins with S. If the user then
types A, the service scrolls to the first item that begins with A.

PFC enables the drop-down DataWindow search service through the
n_cst_dwsrv_dropdownsearch user object.

Usage You establish drop-down DataWindow search functionality by enabling the
service and adding code to two DataWindow events.

v To enable the drop-down DataWindow search service:

1 Call the u_dw of_SetDropDownSearch function:

this.of_SetDropDownSearch(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

2 In the DataWindow control’s EditChanged event, add a call to the
n_cst_dropdownsearch pfc_EditChanged event:

this.inv_dropdownsearch.Event pfc_EditChanged &
(row, dwo, data)

3 In the DataWindow control’s ItemFocusChanged event, add a call to the
n_cst_dwsrv_dropdownsearch pfc_ItemFocusChanged event:

this.inv_dropdownsearch.Event &
pfc_ItemFocusChanged(row, dwo)

4 Specify the DropDownDataWindow column for which the service is
enabled by calling the of_AddColumn function:

this.inv_dropdownsearch.of_AddColumn("dept_id")

Filter service
Overview The PFC filter service allows you to provide easy-to-use filter capabilities in a

DataWindow.

Use this service to add filter capabilities to your application.

PFC enables the filter service through the n_cst_dwsrv_filter user object.

DataWindow services

68 PowerBuilder

Usage The filter service displays Filter dialog boxes automatically. All you do is
enable the service and specify the filter style you want. You can choose among
three styles of filter dialog boxes:

• Default PowerBuilder Filter dialog box:

• Drop-down list box interface (w_filtersimple):

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 69

• Tabbed interface (w_filterextended):

v To enable the filter service:

• Call the u_dw of_SetFilter function, set the Transaction object, and
specify that Filter dialog boxes use DataWindow column header names:

dw_emp.of_SetFilter(TRUE)
dw_emp.of_SetTransObject(SQLCA)
dw_emp.inv_filter.of_SetColumnDisplayNameStyle &
 (dw_emp.inv_filter.HEADER)

Filtering by column header
If you filter by column header, make sure that all columns added to the
DataWindow have headers, and that these conform to the naming scheme
for headers. The default naming scheme uses the suffix _t, but you can
change this by calling the of_SetDefaultHeaderSuffix function.

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To specify the filter style:

• Call the of_SetStyle function, specifying the Filter dialog box type:

dw_emplist.inv_filter.of_SetStyle &
 (dw_emp.inv_filter.SIMPLE)

DataWindow services

70 PowerBuilder

v To display the filter dialog box:

• Call the pfc_FilterDlg event:

dw_emplist.inv_filter.Event pfc_FilterDlg()

You do not typically call this event. In most cases, the user displays the
Filter dialog box by selecting View>Filter from the menu bar.

Find and replace service
Overview The PFC find service allows you to add find and replace functionality to your

application’s DataWindows.

PFC enables the find and replace service through the n_cst_dwsrv_find user
object.

Usage You can use the find service to add find and replace functionality to
DataWindows, displaying either the w_find dialog box or the w_replace dialog
box. These boxes display automatically if you’ve enabled the find service and
the user selects Edit>Find or Edit>Replace from the menu bar of a menu that
descends from PFC’s m_master menu.

v To enable the find service:

• Call the u_dw of_SetFind function:

dw_emplist.of_SetFind(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To display the w_find dialog box:

• Call the u_dw pfc_FindDlg event:

dw_emplist.Event pfc_FindDlg()

You do not typically call this event. In most cases, the user displays the
w_find dialog box by selecting Edit>Find from the menu bar.

v To display the w_replace dialog box:

• Call the u_dw pfc_ReplaceDlg event:

dw_emplist.Event pfc_ReplaceDlg()

You do not typically call this event. In most cases, the user displays the
w_replace dialog box by selecting Edit>Replace from the menu bar.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 71

Linkage service
Overview The PFC linkage service helps you to create master/detail windows and other

types of windows that require coordinated processing.

The linkage service contains the following features:

• Linkage style Controls whether detail DataWindows retrieve rows,
filter rows, or scroll to the appropriate row

• Update style Controls how the linkage service updates DataWindows
(top-down, bottom-up, top-down then bottom-up, bottom-up then top-
down, or a developer-specified custom update)

• Confirm on row change When the master changes rows, this option
displays a confirmation dialog if modifications made to detail
DataWindows will be lost

• Confirm on delete Displays a confirmation dialog when the user deletes
rows

• Cascading key changes The linkage service automatically updates
detail DataWindows when you change a key value on the master

• Delete style When you delete a master row, this option specifies
whether the linkage service deletes detail rows, discards detail rows, or
leaves them alone

• Extended update Allows you to integrate other controls (such as
ListViews, TreeViews, and DataStores) into the default save process

The linkage service is completed integrated with n_cst_luw and with the
w_master pfc_Save process.

Sharing data between DataWindows
You can use the PowerScript ShareData function to share data between master
and detail DataWindows. However, do not insert rows into the detail
DataWindow when sharing data.

PFC enables the linkage service through the n_cst_dwsrv_linkage user object.

Usage You can use the linkage service to coordinate any type of processing among
DataWindows. However, the most common use is for master/detail processing.

DataWindow services

72 PowerBuilder

v To enable the linkage service:

• Call the u_dw of_SetLinkage function:

dw_emplist.of_SetLinkage(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To use the linkage service to coordinate Master/Detail processing:

1 Enable the linkage service for both the master and detail DataWindows by
calling the u_dw of_SetLinkage function, once for each DataWindow:

dw_master.of_SetLinkage(TRUE)
dw_detail.of_SetLinkage(TRUE)

2 Call the u_dw of_SetTransObject function to establish the Transaction
object for the master and detail DataWindows:

dw_master.inv_linkage.of_SetTransObject(SQLCA)

3 Link the detail to the master by calling the of_SetMaster function in the
detail DataWindow:

dw_detail.inv_linkage.of_SetMaster(dw_master)

4 Register the related columns by calling the of_Register function:

dw_detail.inv_linkage.of_Register &
("emp_id","emp_id")

5 (Optional) Specify that the service updates DataWindows from the bottom
of the linkage chain on up (the default is to update top down):

dw_detail.inv_linkage.of_SetUpdateStyle &

 (dw_detail.inv_linkage.BOTTOMUP)

6 Establish the action taken by the detail when a row changes in the master
by calling the of_SetStyle function.

This example specifies that the detail DataWindow retrieves a row
whenever the master changes:

dw_detail.inv_linkage.of_SetStyle &
 (dw_detail.inv_linkage.RETRIEVE)

7 Call the master DataWindow’s of_Retrieve function:

IF dw_master.of_Retrieve() = -1 THEN
MessageBox("Error","Retrieve error")

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 73

ELSE
dw_master.SetFocus()

END IF

Previous steps can be in one script
You can code the previous steps in a single event, such as the window
Open event.

8 Add retrieval logic to the master DataWindow’s pfc_Retrieve event:

Return this.Retrieve()

Retrieving rows
If the linkage service refreshes detail rows via retrieval, you only need to code
a Retrieve function for the master DataWindow. With the filter and scroll
options, you must also code Retrieve functions in detail DataWindows.

v To enable confirm on row change (retrieval style only):

1 Call the of_SetUpdateOnRowChange function for the detail
DataWindow:

dw_detail.inv_linkage.of_SetUpdateOnRowChange(TRUE)

2 Call the of_SetConfirmOnRowChange function for the detail
DataWindow:

dw_detail.inv_linkage.of_SetConfirmOnRowChange &
 (TRUE)

v To enable confirm on delete:

1 Call the of_SetUpdateOnRowChange function for the detail
DataWindow:

dw_detail.inv_linkage.of_SetUpdateOnRowChange(TRUE)

2 Call the of_SetConfirmOnDelete function for the detail DataWindow:

dw_detail.inv_linkage.of_SetConfirmOnDelete(TRUE)

v To enable cascading key changes:

• Call the of_SetSyncOnKeyChange function for every DataWindow in the
linkage chain:

dw_master.inv_linkage.of_SetSyncOnKeyChange(TRUE)

dw_detail.inv_linkage.of_SetSyncOnKeyChange(TRUE)

DataWindow services

74 PowerBuilder

v To specify deletion style:

• Call the of_SetDeleteStyle function for all master DataWindows in the
linkage chain:

dw_master.inv_linkage.of_SetDeleteStyle &

 (dw_cust.inv_linkage.DISCARD_ROWS)

v To enable extended update:

• Call the of_SetOtherSaveObjects function to add other controls to the
default save process:

PowerObject lpo_objs[]

// This example adds the lv_salesinfo ListView
// to the save process.
lpo_objs[1] = lv_salesinfo
dw_master.inv_linkage.of_SetOtherSaveObjects &
 (lpo_objs)

Multitable update service
Overview The PFC multitable update service makes it easy for you to update

DataWindows containing columns from multiple tables.

PFC enables multitable update services through the n_cst_dwsrv_multitable
user object.

DataStore services
This service is available to the n_ds DataStore via the n_cst_dssrv_multitable
user object.

Usage Use this service when you need to update rows for a DataWindow that contains
data from more than one table. When you call the w_master pfc_Save event,
PFC updates all specified tables in all DataWindows on the window.

v To enable the multitable update service:

• Call the u_dw of_SetMultiTable function:

dw_emplist.of_SetMultiTable(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 75

v To specify the tables to be updated:

• Call the of_Register function once for each table to be updated in a
multitable update:

String ls_projcols[] = &
{"proj_id"}

String ls_taskcols[] = &
{"proj_id", "task_id"}

dw_project.inv_multitable.of_Register &
("project", ls_projcols)

dw_project.inv_multitable.of_Register &
("task", ls_taskcols)

v (Optional) To update a DataWindow that contains data from multiple
database tables:

• Call the w_master pfc_Save event:

Integer li_return

li_return = w_sheet.Event pfc_Save()
...

Print preview service
Overview The PFC print preview service enables you to provide DataWindow print

preview capabilities:

• Print preview

• First page, next page, previous page, last page

• Zoom

Menus that descend from PFC’s m_master menu have automatic access to this
functionality.

PFC enables the print preview service through the n_cst_dwsrv_printpreview
user object.

DataStore services
This service is available to the n_ds DataStore via the
n_cst_dssrv_printpreview user object.

DataWindow services

76 PowerBuilder

Usage Use this service to provide print preview capabilities in your applications.
Users enter print preview mode by selecting File>Print Preview from the menu
bar.

v To enable the print preview service:

• Call the u_dw of_SetPrintPreview function:

dw_emplist.of_SetPrintPreview(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

DataWindow properties service
Overview The DataWindow properties service enables display of the DataWindow

Properties window, which allows you to:

• Selectively enable and disable DataWindow services

• View the PFC syntax for the selected service

• Access and modify DataWindow properties interactively, including:

DataWindow buffers
Row and column status
Statistics
Properties of all objects on the DataWindow object

See “DataWindow Properties window” on page 207.

Usage Use this service to enable display of the DataWindow Properties window.

v To enable the DataWindow properties service:

1 Call the u_dw of_SetProperty function:

dw_emplist.of_SetProperty(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

2 When the DataWindow displays, right-click and select DataWindow
Properties.

The DataWindow Properties window displays.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 77

Query mode service
Overview The PFC query mode service makes it easier for you to provide query mode

capabilities in applications. The service also helps users to understand and use
query mode.

While in query mode, users can right-click to display a pop-up menu with
options that display columns, operators, and values.

For complete information on DataWindow query mode, see the PowerBuilder
User’s Guide.

PFC enables the query mode service through the n_cst_dwsrv_querymode user
object.

Usage Use this service for the following:

• Beginning and ending query mode

• Specifying the columns eligible for query mode

• Saving queries to a file and loading previously saved queries

v To enable the query mode service:

• Call the u_dw of_SetQuerymode function:

dw_emplist.of_SetQuerymode(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To begin query mode:

• Call the of_SetEnabled function, passing TRUE:

dw_emplist.inv_querymode.of_SetEnabled(TRUE)

v To end query mode:

• Call the of_SetEnabled function, passing FALSE:

dw_emplist.inv_querymode.of_SetEnabled(FALSE)

DataWindow services

78 PowerBuilder

v To specify columns eligible for query mode:

• Call the of_SetQueryCols function, passing an array listing the columns
eligible for query mode:

String ls_cols[]

ls_cols[1] = "emp_dept_id"
ls_cols[2] = "emp_id"
dw_emplist.inv_querymode.of_SetQueryCols(ls_cols)

When you call of_SetEnabled, the query mode service protects ineligible
columns.

v To save a query to a file:

1 Start query mode by calling of_SetEnabled (TRUE).

2 Allow the user to specify query mode criteria.

3 Call the of_Save function.

This function displays a dialog box that prompts the user for the name of
the file in which to save the query.

v To load a query from a file:

• Call the of_Load function.

This function displays a dialog box that prompts the user to select a saved
query from disk. If the user selects a file, this function uses the selected file
to determine selection criteria.

Reporting service
Overview The PFC reporting service allows you to provide enhanced viewing and

printing capabilities in an application’s DataWindows.

Many of this service’s functions provide the option of either executing the
DataWindow Modify function or returning Modify syntax for use as input to
your own Modify function. If you code more than two consecutive report
service functions, consider returning the Modify syntax, concatenating the
strings and issuing the Modify function from within your own code.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 79

DataWindows must use PBUs or pixels
To use this service, the DataWindow object must use PBUs or pixels as the
DataWindow Unit. It does not work with DataWindows that use thousandths
of an inch or thousandths of a centimeter as the DataWindow Unit.

PFC enables reporting services through the n_cst_dwsrv_report user object.

DataStore services
This service is available to the n_ds DataStore via the n_cst_dssrv_report user
object.

Usage Use this service for the following:

• Adding items to a DataWindow

• Creating a composite DataWindow out of one or more individual
DataWindows (allowing multiple DataWindows to print as a single report)

• Formatting and printing

• Setting background, color, and border

• Zooming a DataWindow relative to its current size

v To enable the reporting service:

• Call the u_dw of_SetReport function:

dw_emplist.of_SetReport(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To add items to a DataWindow:

• Call one of the following n_cst_dwsrv_report functions:

Function What it does

of_AddCompute Adds a computed column

of_AddLine Adds a line

of_AddPicture Adds a bitmap

of_AddText Adds text

DataWindow services

80 PowerBuilder

v To create a composite DataWindow:

1 Call the of_CreateComposite function, passing information on the
DataWindows to be included in the composite:

String ls_dws[], ls_trailfooter[]
String ls_slide[]

String ls_return
Integer li_return
Boolean lb_vertical
Border lbo_border[]

lb_vertical = TRUE
ls_dws[1] = "d_employee"
ls_dws[2] = "d_benefits"
ls_trailfooter[1] = "No"
ls_trailfooter[2] = "Yes"
ls_slide[1] = "AllAbove"
ls_slide[2] = "AllAbove"
lbo_border[1] = Lowered!
lbo_border[2] = Lowered!

li_Return = &
dw_composite.inv_report.of_CreateComposite &
(ls_dws, lb_vertical, ls_trailfooter, &
ls_slide, lbo_border)

IF li_Return = 1 THEN
dw_composite.SetTransObject(SQLCA)
dw_composite.Event pfc_Retrieve()

END IF

2 Print or display the composite DataWindow as appropriate.

dw_composite.inv_report.of_PrintReport &
(TRUE, FALSE)

v To print a DataWindow:

• Call the of_PrintReport function.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 81

v To set defaults, color, and border:

• Call one of the following n_cst_dwsrv_report functions:

v To control DataWindow zoom:

• Call the of_SetRelativeZoom function.

Zoom is relative to the current display
Of_SetRelativeZoom modifies zoom percentage relative to the current
zoom percentage. For example, if a DataWindow is currently displayed at
80% and you specify of_SetRelativeZoom (50), the function changes the
zoom percentage to 40%.

Required column service
Overview The PFC required column service. This service enables and disables default

DataWindow processing for required fields. This makes it easier for your
application to handle interdependent fields within a DataWindow.

This service applies only to DataWindow columns that use the nilisnull
property. For example, EditMasks don’t have this property, so the required
column service doesn’t apply to edit masks.

PFC enables the required column service through the n_cst_dwsrv_reqcolumn
user object.

Usage DataWindow required fields processing can interfere with the user-directed
interface offered by a GUI application. The required column service allows you
to defer required fields processing until the user completes data entry.

Function What it does

of_SetDefaultBackColor
of_SetDefaultBorder
of_SetDefaultCharset
of_SetDefaultColor
of_SetDefaultFontFace
of_SetDefaultFontSize

Modifies DataWindow defaults

of_SetBorder Modifies the border for one or more objects in
a DataWindow

of_SetColor Modifies the color and background color (if
applicable) of one or more objects in a
DataWindow

DataWindow services

82 PowerBuilder

The service allows you to specify columns for which PowerBuilder should still
perform required fields processing.

Required fields checking
When you call the window’s pfc_Save event, it automatically performs
required fields checking before updating the database.

v To enable the required column service:

• Call the u_dw of_SetReqColumn function:

dw_emplist.of_SetReqColumn(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To override the service for certain columns:

• Call the of_RegisterSkipColumn to specify which columns should retain
standard PowerBuilder required fields processing:

dw_emplist.inv_reqcolumn.of_RegisterSkipColumn &
("dept_id")

Row management service
Overview The PFC row management service allows you to insert and delete rows. The

row management service also provides a function to undo row deletions.

PFC enables the row management service through the
n_cst_dwsrv_rowmanager user object.

Usage Use this service for the following:

• Adding an empty row to the end of the DataWindow

• Inserting an empty row between two existing rows

• Deleting one or more rows

• Displaying a dialog box allowing you to restore deleted rows

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 83

v To enable the row management service:

• Call the u_dw of_SetRowManager function:

dw_emplist.of_SetRowManager(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To add an empty row to the end of the DataWindow:

• Call the pfc_AddRow event:

Long ll_return

ll_return = &
dw_emplist.inv_rowmanager.Event pfc_AddRow()

IF ll_return = -1 THEN
MessageBox("Error", "Error adding empty row")

END IF

PFC calls this event automatically when the user selects Add from the
m_dw pop-up menu.

v To insert an empty row between two existing rows:

• Call the pfc_InsertRow event.

This example inserts before the current row:

Long ll_return

ll_return = dw_emplist.inv_rowmanager.Event &
pfc_InsertRow()

IF ll_return = -1 THEN
MessageBox("Error", "Insert error")

END IF

PFC calls this event automatically when the user selects Insert from the
m_dw pop-up menu.

v To delete rows:

• Call the pfc_DeleteRow event.

This example deletes the current row or all selected rows:

Long ll_return

ll_return = &
dw_emplist.inv_rowmanager.pfc_DeleteRow()

DataWindow services

84 PowerBuilder

IF ll_return = -1 THEN
MessageBox("Error", "Deletion error")

END IF

PFC calls this event automatically when the user selects Delete from the
m_dw pop-up menu.

To allow users to select multiple rows, use the row selection service.

v To restore deleted rows:

• Call the pfc_RestoreRow event.

This event calls the of_UnDelete function, which displays the
w_restorerow dialog box, allowing users to restore deleted rows:

Row selection service
Overview The PFC row selection service allows you to provide single-, multi-, and

extended selection capabilities in a DataWindow.

PFC enables the row selection service through the n_cst_dwsrv_rowselection
user object.

Usage The row selection service handles all row selection automatically. All you have
to do is enable the service and specify the desired selection style:

• Single-row selection Handles row selection when your DataWindow
allows one row to be selected at a time.

• Multirow selection Handles row selection by allowing your runtime
users to select multiple rows with single clicks. These rows can be
contiguous or noncontiguous.

When multirow selection is enabled, runtime users toggle a row’s selected
state by clicking it. This capability is similar to a list box’s MultiSelect
attribute.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 85

• Extended selection Handles row selection by allowing your runtime
users to select multiple rows with SHIFT+click and CTRL+click.

When extended selection is enabled, runtime users select multiple
contiguous rows using SHIFT+click and noncontiguous rows using
CTRL+click. This capability is similar to a list box’s ExtendedSelect
attribute.

v To enable the row selection service:

• Call the u_dw of_SetRowSelect function:

dw_emplist.of_SetRowSelect(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

v To specify the row selection style:

• Call the of_SetStyle function, passing the selection style you want. This
example enables extended selection:

dw_emplist.inv_rowselect.of_SetStyle &
(dw_emplist.inv_rowselect.EXTENDED)

DataWindow resize service
Overview The DataWindow resize service allows you to resize the columns in a

DataWindow control when the user resizes the window.

Use this service to add resize capabilities to the columns that display in a
DataWindow.

PFC enables the DataWindow resize service through the n_cst_dwsrv_resize
user object.

Usage You use the DataWindow resize service to enable resizing of the objects
displayed in a DataWindow object (so that when the user resizes the window,
this service resizes DataWindow contents automatically).

Presentation styles
You cannot use the DataWindow resize service with DataWindow objects that
have the Composite or RichTextEdit presentation style.

DataWindow services

86 PowerBuilder

This service provides two resizing options:

• For simple resizing Call the of_Register function passing
n_cst_dwsrv_resize constants, such as FIXEDBOTTOM

• For total control over resizing Implement weighted resize by calling
the of_Register function with explicit specifications for moving and
scaling

v To enable the DataWindow resize service:

1 Call the u_dw of_SetResize function, set the Transaction object, and
specify that Sort dialog boxes use DataWindow column header names:

dw_emp.of_SetResize(TRUE)

U_dw destroys the service automatically when the DataWindow is
destroyed.

2 (Optional) Specify the DataWindow control’s original size by calling the
of_SetOrigSize function. You call this function if an MDI application
opens MDI sheets with an enumeration other than Original!:

this.inv_resize.of_SetOrigSize &
(this.width, this.height)

3 (Optional) Call the of_SetMinSize function to specify a minimum size
below which the DataWindow resize service no longer resizes
DataWindow contents:

this.inv_resize.of_SetMinSize &
(this.width-50, this.height-100)

4 Specify the columns to be resized and how they should be resized by
calling the of_Register function:

this.inv_resize.of_Register("emp_fname", &
0, 0, 50, 50)

this.inv_resize.of_Register("emp_lname", &
100, 0, 50, 50)

5 Enable the window resize service and register the DataWindow control
(this example is from a window Open event):

this.of_SetResize(TRUE)
this.inv_resize.of_Register(dw_1, 0, 0, 100, 100)

6 (Optional) Call the of_UnRegister function to remove columns from the
resize list.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 87

Sort service
Overview The PFC sort service allows you to provide easy-to-use sort capabilities in a

DataWindow.

Use this service to add sort capabilities to your application. For example, you
might add a menu item that calls the pfc_SortDlg event.

PFC enables the sort service through the n_cst_dwsrv_sort user object.

Usage The sort service displays Sort dialog boxes automatically. All you do is enable
the service and specify the sort style you want. You can choose among four
styles of sort dialog boxes:

• Default PowerBuilder Sort dialog box:

• Drag and drop sorting (w_sortdragdrop dialog box):

DataWindow services

88 PowerBuilder

• Multicolumn sorting (w_sortmulti dialog box):

• Single-column sort (pfc_w_sortsingle dialog box):

Additionally, you can allow the user to sort by clicking on column headings
(for column header sorting, the column header object must be in the primary
header band of the DataWindow)

v To enable the sort service:

• Call the u_dw of_SetSort function and specify that Sort dialog boxes use
DataWindow column header names:

dw_emp.of_SetSort(TRUE)
dw_emp.inv_sort.of_SetColumnDisplayNameStyle &
 (dw_emp.inv_sort.HEADER)

Sorting by column header
If you sort by column header, make sure that all columns added to the
DataWindow have headers, and that these conform to the naming scheme
for headers. The default naming scheme uses the suffix _t, but you can
change this by calling the of_SetDefaultHeaderSuffix function.

U_dw destroys the service automatically when the DataWindow is
destroyed.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 89

v To specify whether PFC sort dialog boxes sort on display values or data
values:

• Call the of_SetUseDisplay function:

dw_emp.inv_sort.of_SetUseDisplay(TRUE)

v To specify the sort style:

• Call the of_SetStyle function, specifying the Sort dialog box type:

dw_emp.inv_sort.of_SetStyle &
 (dw_emp.inv_sort.DRAGDROP)

v To display the Sort dialog box:

• Call the u_dw pfc_SortDlg event:

dw_emplist.Event pfc_SortDlg()

You do not typically call this event. In most cases, the user displays the Sort
dialog box by selecting View>Sort from the menu bar of a menu that descends
from PFC’s m_master menu.

Window services
PFC implements window services through:

• Functions, events, and instance variables coded in w_master and its
descendants

• Custom class user objects

To access window services, you create windows that descend from one of
PFC’s w_master descendants:

w_child
w_frame
w_main
w_popup
w_response
w_sheet

W_master contains:

• Functions to enable and disable window services implemented as custom
class user objects

Window services

90 PowerBuilder

• Instance variables that allow you to reference each custom class user
object’s functions, events, and instance variables (this type of instance
variable is called a reference variable)

• Precoded events and user events that perform window services and call
custom class user object functions

• Empty user events to which you add code to perform application-specific
processing

Inherit from windows in the extension level
When using windows, always inherit from windows with the w_ prefix (don’t
inherit from windows with the pfc_ prefix). Pfc_ prefixed objects are subject
to change when you upgrade PFC versions.

 The following table lists window services and how they are implemented:

Basic window services
Overview PFC windows include:

• Window functions

• Precoded events and user events

• Empty user events

These functions and events are available to all of your application’s windows.
PFC implements much of this functionality automatically when you use PFC
windows in conjunction with PFC visual user objects and menus that descend
from PFC’s m_master menu.

Window service Implementation

Basic window service Implemented in n_cst_winsrv and as well as functions
and user events in PFC windows

Preference service n_cst_winsrv_preference

Sheet management
service

n_cst_winsrv_sheetmanager

Status bar service n_cst_winsrv_statusbar

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 91

Automatic CloseQuery processing
PFC window services include automatic CloseQuery processing for all
DataWindows in a window. This processing saves all pending changes if the
user clicks Yes in the Save Changes dialog box.

If you want to implement application-specific save processing, override the
CloseQuery event in your application’s windows. (To do this globally, override
CloseQuery in w_master or disable CloseQuery processing by setting the
w_master ib_disableclosequery instance variable to TRUE.)

Usage Basic PFC window functionality includes:

• Message router and menu integration

• Empty user events, which are triggered by PFC menu items

• Toolbar control (w_frame only)

• Automatic save processing, implemented through the logical unit of work
service

For information on using a specific PFC window type, see the window’s
discussion in the PFC Object Reference.

v To use the message router from a menu item script:

• Call the of_SendMessage menu function, passing the user event to be
called:

of_SendMessage("pfc_CheckStatus")

The of_SendMessage function passes the request to n_cst_menu
of_SendMessage function, which calls the current window’s
pfc_MessageRouter user event, which calls the specified user event
automatically.

v To use the message router from within a nonmenu function or event:

• Call the active window’s pfc_MessageRouter user event, passing the user
event to be called:

this.Event pfc_MessageRouter("pfc_CheckStatus")

The pfc_MessageRouter event passes the request to the current window,
which triggers the specified user event automatically.

Window services

92 PowerBuilder

PFC menus use the message router
PFC menus use the of_SendMessage menu function to call PFC user
events on a window.

v To use empty user events:

• Add code to the PFC user event that performs the intended processing.
This example, which you might code in the pfc_PageSetup user event,
displays a PageSetup dialog box for the current DataWindow:

Integer li_return

li_return = idw_active.Event pfc_PageSetup()
IF li_return > 0 THEN

li_return = idw_active.Event &
pfc_PrintImmediate()

END IF

The discussions in the PFC Object Reference show which events require
additional coding.

v To display a dialog box that allows users to control toolbars:

• Call the frame window’s pfc_Toolbars user event:

gnv_app.of_GetFrame().Event pfc_Toolbars()

This dialog box displays automatically when the user selects
Tools>Customize Toolbars from a menu that descends from PFC’s
m_master menu.

v To save changes to the database:

• Call the window’s pfc_Save user event:

Integer li_return

li_return = this.Event pfc_Save()

PFC menus call this user event when the user selects File>Save from a
menu that descends from PFC’s m_master menu. Additionally, the
w_master CloseQuery event calls pfc_Save if the user clicks Yes when
prompted to save changes.

v To center a window on the screen:

1 Enable the base window service:

this.of_SetBase(TRUE)

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 93

2 Call the n_cst_winsrv of_Center function:

this.inv_base.of_Center()

Preference service
Overview The PFC preference service provides functionality that automatically saves

and restores a user’s window settings using either the registry or an INI file.
The preference services saves:

• Size

• Position

• Toolbar settings

PFC enables the preference service through the n_cst_winsrv_preference user
object.

Usage Use this service to save and restore window settings.

Automatic resetting
If you enable the preference service, windows descended from w_master save
and restore settings automatically.

v To enable the window preference service:

• Call the w_master of_SetPreference function. This function is available in
all windows developed with PFC (w_master is the ancestor of all PFC
windows):

this.of_SetPreference(TRUE)

PFC destroys the service automatically when the window closes.

v To specify which window settings to restore, call one or more of the
following functions:

• Call the following functions as needed:

of_SetToolbarItemOrder
of_SetToolbarItemSpace
of_SetToolbarItemVisible
of_SetToolbars
of_SetToolbarTitles
of_SetWindow

Window services

94 PowerBuilder

Sheet management service
Overview The PFC sheet management service provides functions that help you manage

multiple sheets in an MDI application. When you enable the sheet management
service, PFC enables these items on the Window menu:

• Minimize All Windows

• Undo Arrange Icons

PFC enables the sheet management service through the
n_cst_winsrv_sheetmanager user object.

Usage Use this service to manage multiple sheets in MDI applications.

v To enable the window sheet management service:

• Call the w_frame of_SetSheetManager function. This function is available
in all windows that descend from w_frame:

this.of_SetSheetManager(TRUE)

PFC destroys the service automatically when the frame window closes.

v To access sheet information:

• Call the following functions as needed:

of_GetSheetCount
of_GetSheets
of_GetSheetsByClass
of_GetSheetsByTitle

PFC destroys the service automatically when the frame window closes.

Status bar service
Overview The PFC status bar service displays date, time, and memory information in the

lower-right corner of an MDI frame window. Other status bar service features
include:

• Threshold monitoring for GDI and free memory

• Progress bar support

• Display of developer-specific text

For information on progress bar display, see “Using the progress bar control”
on page 183.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 95

PFC enables the status bar service through the n_cst_winsrv_statusbar user
object. Status bar information displays in the w_statusbar pop-up window.

You call n_cst_winsrv_statusbar functions to control the items displayed.

Usage Use this service to display status bar information in an MDI frame window.

If necessary, you can call w_statusbar functions to modify status bar
information via PowerScript code.

v To enable the window status bar service:

1 Call the w_frame of_SetStatusBar function. This function is available in
all windows that descend from w_frame:

this.of_SetStatusBar(TRUE)

PFC destroys the service automatically when the frame window closes.

2 Call n_cst_winsrv_statusbar functions in the w_frame pfc_PreOpen event
to specify the items displayed. The service displays items in the order that
their associated functions are called, from left to right. For example, the
following example displays memory to the left of the date and time:

this.inv_statusbar.of_SetMem(TRUE)
this.inv_statusbar.of_SetTimer(TRUE)

3 Call other n_cst_winsrv_statusbar function as appropriate.

Menu service
Overview The PFC menu service provides functions that help you communicate between

a menu and a window. It also provides functions that return information on an
MDI frame and toolbar items. You use the menu service functions within menu
item scripts.

PFC enables the menu service through the n_cst_menu user object.

Usage Use this service in non-PFC menus to access the frame window and to
communicate with windows.

v To enable the menu service:

• Declare a variable of type n_cst_menu:

n_cst_menu lnv_menu

Resize service

96 PowerBuilder

This can be a menu-level instance variable or a local variable within each
menu item script.

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

v To use the message router:

• Call the of_SendMessage function from within a menu item script:

n_cst_menu lnv_menu

Message.StringParm = "w_emplist"
lnv_menu.of_SendMessage(this, "pfc_Open")

v To access the frame window:

• Call the of_GetMDIFrame function from within a menu item script (this
example accesses the MDI frame to use in calling a frame-level event):

n_cst_menu lnv_menu
w_frame lw_frame

// This is an alternative to of_SendMessage.
lnv_menu.of_GetMDIFrame(this, lw_frame)
Message.StringParm = "w_emplist"
lw_frame.Event pfc_Open()

Resize service
Overview The PFC resize service provides functions that automatically move and resize

controls when the user resizes a window, tab, or tab page. This service allows
you to control how and whether controls resize when the window, tab, or tab
page resizes.

PFC enables the resize service through the n_cst_resize user object.

You use n_cst_dwsrv_resize, the DataWindow resize service to move and
resize columns within a DataWindow.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 97

Usage Use this service to control window resizing. It provides two resizing options:

• For simple resizing Call the of_Register function passing n_cst_resize
constants, such as FIXEDBOTTOM

• For total control over resizing Implement weighted resize by calling
the of_Register function with explicit specifications for moving and
scaling

v To enable the resize service:

• Call the w_master, u_tab, or u_tabpg of_SetResize function:

this.of_SetResize(TRUE)

PFC destroys the service automatically when the window or tab closes.

v To register resizable controls:

• Call the of_Register function specifying how the control should respond
when the window or tab resize. For each registered control, you specify
how much the control should move during resize and how much the
control should scale during resize. This example lets a DataWindow
control expand down and to the right:

this.inv_resize.of_Register(dw_emplist, &
0, 100, 100, 100)

v To specify a minimum size below which the resize service no longer
resizes controls:

• Call the of_SetMinSize function, specifying a minimum size. You might
place this code in the window Open event, specifying a minimum size
somewhat smaller than the original size:

Integer li_return

li_return = this.inv_resize.of_SetMinSize &
(this.width - 200, this.height - 150)

v To use the resize service with sheets in an MDI application:

• Use either of the following methods:

• Open sheets in their original size:

OpenSheet(w_emp, "w_emplist", w_frame, &
 0 , Original!)

Conversion service

98 PowerBuilder

• If you open sheets with any other enumeration, call the
of_SetOrigSize function before registering controls with the resize
service. The call to of_SetOrigSize passes what the width and height
would have been had the sheet opened in the original size:

this.inv_resize.of_SetOrigSize(1200, 1000)

Conversion service
Overview The PFC conversion service provides functions that you can call to convert

values from one data type to another. For example, you can call the of_Boolean
function to convert an integer or a string into a boolean value.

PFC enables the conversion service through the n_cst_conversion user object.
N_cst_conversion uses the PowerBuilder autoinstantiate option, which
eliminates the need for CREATE and DESTROY statements.

Usage You can use conversion service functions to convert:

For complete information on conversion service functions, see the discussion
about n_cst_conversion in the PFC Object Reference.

Defining
n_cst_conversion

Define n_cst_conversion as a global, instance, or local variable, as appropriate
for your application:

From To

Integer or String Boolean

Boolean, ToolbarAlignment, or SQLPreviewType String

Boolean Integer

String ToolbarAlignment

Button String

Icon String

String SQLPreviewType

Usage of conversion functions Variable type

Throughout your application Global variable or as an instance variable
on n_cst_appmanager

Within a single object Instance variable for the object

Within a single script Local variable

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 99

v To enable the conversion service:

• Declare a variable of type n_cst_conversion.

n_cst_conversion inv_conversion

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

v To call a conversion service function:

• Call the function, using dot notation to specify the object instance.

This example assumes an inv_conversion instance variable:

String ls_checked

ls_checked = inv_conversion.of_String &
(cbx_confirmed.Enabled)

MessageBox("Conversion", "CheckBox is: " &
+ ls_checked)

Date/Time service
Overview The PFC date/time service provides functions that you can call to perform

calculations with dates. For example, you can call the of_SecondsAfter
function to determine the number of seconds between two date/time values.

PFC enables the date/time service through the n_cst_datetime user object.
N_cst_datetime uses the PowerBuilder autoinstantiate option, which
eliminates the need for CREATE and DESTROY statements.

Usage You can use the date/time service to perform many date and time calculations.
Functions you can perform with the date/time service include:

• Convert a Julian date to a Gregorian date (Gregorian dates use the Date
datatype)

• Convert seconds to hours

• Convert seconds to days

• Convert a Gregorian date to a Julian date

• Determine the number of years between two date/time values

• Determine the number of months between two date/time values

Date/Time service

100 PowerBuilder

• Determine the number of weeks between two date/time values

• Determine the number of seconds between two date/time values

• Determine the number of milliseconds between two date/time values

• Determine if a date is valid

• Determine if a date falls on a weekday

• Determine if a date falls on a weekend

• Halt processing until a specified date/time

Define n_cst_datetime as a global, instance, or local variable, as appropriate
for your application.

v To enable the date/time service:

• Declare a variable of type n_cst_datetime:

n_cst_datetime inv_datetime

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

v To call a date/time service function:

• Call the function, using dot notation to specify the object instance.

This example assumes an inv_datetime instance variable:

Long ll_seconds, ll_days

ll_seconds = Long(sle_seconds.Text)
ll_days = inv_datetime.of_Days(ll_seconds)

MessageBox("Date/Time", &
 String(ll_seconds) + " seconds is equal to " + &
 String(ll_days) + " days.")

Usage of date/time functions Variable type

Throughout your application Global variable or as an instance variable on
n_cst_appmanager

Within a single object Instance variable for the object

Within a single script Local variable

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 101

File service
Overview The PFC file service provides functions that you can call to add file-

management functionality to an application. For example, you can call the
of_FileRename function to rename a file.

The file service includes support for many platform-specific types of
operations, automatically calling the appropriate external function.

PFC enables the file service through the n_cst_filesrv user object and its
platform-specific descendants.

Usage Actions you can perform with the file service include:

• Assembling a concatenated filename

• Creating and deleting directories

• Reading, writing, renaming, and copying files, including files larger than
32,765 bytes

• Accessing file information, including date and time

• Creating and sorting a list of all files in a directory

Define n_cst_filesrv as a global, instance, or local variable, as appropriate for
your application:

Because PFC instantiates a platform-specific descendant of n_cst_filesrv, it
does not use the autoinstantiate feature. You must explicitly destroy the
n_cst_filesrv instance when you are through.

v To enable the file service:

1 Declare a variable of type n_cst_filesrv:

n_cst_filesrv inv_filesrv

2 Call the f_set_filesrv global function:

f_SetFilesrv(inv_filesrv, TRUE)

The f_SetFilesrv global function automatically creates the platform-
specific n_cst_filesrv descendant.

Usage of file service functions Variable type

Throughout your application Global variable or as an instance variable on
n_cst_appmanager

Within a single object Instance variable for the object

Within a single script Local variable

INI file service

102 PowerBuilder

3 Destroy the n_cst_filesrv object when you are through:

DESTROY inv_filesrv

v To call a file service function:

• Call the function, using dot notation to specify the object instance.

This example calls the of_FileRead function to access the contents of the
file specified in the sle_filename SingleLineEdit. The example assumes an
inv_filesrv instance variable:

Integer li_return
String ls_file[]

li_return = inv_filesrv.of_FileRead &
 (sle_filename.text, ls_file)
CHOOSE CASE li_return
 CASE -1
 MessageBox("Error", "Error accessing file")
 CASE ELSE
 // File processing goes here
END CHOOSE

v To destroy the file service:

• Use the DESTROY statement:

DESTROY inv_filesrv

INI file service
Overview The PFC INI file service provides functions that you can call to read from and

write to INI files.

PFC enables the INI file service through the n_cst_inifile user object.

Usage You can use the INI file service to:

• Retrieve all keys for an INI-file section

• Retrieve all sections for an INI file

• Remove a line from the INI file

• Remove an entire section from the INI file

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 103

Using ProfileInt, ProfileString, and SetProfileString
Use the ProfileInt, ProfileString, and SetProfileString PowerScript functions to
access INI file entries one at a time.

The INI file service is not case sensitive.

v To enable the INI file service:

• Declare a variable of type n_cst_inifile:

n_cst_inifile inv_ini_handler

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

v To use the INI file service:

• Call n_cst_inifile object functions as needed, using dot notation to specify
the object instance.

This example, which displays all of an INI file section’s keys in a ListBox,
assumes an inv_ini_handler instance variable:

String ls_keys[]
Integer li_count, li_size

li_size = inv_ini_handler.of_GetKeys &
(gnv_app.of_GetAppINIFile(), "CustApp",

ls_keys)
lb_keys.Reset()
FOR li_count = 1 to li_size

lb_keys.AddItem(ls_keys[li_count])
NEXT

Numerical service
Overview The PFC numerical service provides functions that you can call to access

binary data. For example, you can call the of_GetBit function to determine if a
specified bit is on or off.

PFC enables the numerical service through the n_cst_numerical user object.

Numerical service

104 PowerBuilder

Usage You can use numerical service functions to:

• Determine whether a specified bit is on or off

• Convert a base 10 number to binary

• Convert a binary number to base 10

Use this object with the Windows SDK
The Windows Software Development Kit (SDK) includes many functions that
return bit values. Use the of_GetBit function to access these values.

Define n_cst_numerical as a global, instance, or local variable, as appropriate
for your application:

v To enable the numerical service:

• Declare a variable of type n_cst_numerical:

n_cst_numerical inv_numerical

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

v To call a numerical service function:

• Call the function, using dot notation to specify the object instance.

This example assumes an inv_numerical instance variable:

Long ll_base10
String ls_binary

ll_base10 = Long(sle_base10.text)
ls_binary = inv_numerical.of_Binary(ll_base10)
MessageBox("Numerical", &

String(ll_base10) + " base 10 is equal to " &
+ ls_binary + " in binary.")

Usage of numerical functions Variable type

Throughout your application Global variable or as an instance variable
on n_cst_appmanager

Within a single object Instance variable for the object

Within a single script Local variable

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 105

Platform service
Overview The PFC platform service provides functions that you can call to add platform-

specific functionality to an application. You can use this service’s functions on
multiple platforms without recoding or adding conditional logic that checks for
the current platform. For example, you can call the of_GetFreeMemory
function to determine the amount of remaining memory; the platform service
automatically calls the appropriate external function for the current platform.

PFC enables platform services through the n_cst_platform user object and its
platform-specific descendants.

Print and Page Setup dialog boxes
PFC enables the Print and Page Setup dialog boxes through the platform
service.

Usage Functions you can perform with the platform service include:

• Determining the amount of free memory

• Determining the amount of free system resources

• Determining the height and width, in PBUs, given a text string

Define n_cst_platform as a global, instance, or local variable, as appropriate
for your application:

Because PFC instantiates a platform-specific descendant of n_cst_platform, it
does not use the autoinstantiate feature. You must explicitly destroy the
n_cst_platform instance when you are through.

v To enable the platform service:

1 Declare a variable of type n_cst_platform:

n_cst_platform inv_platform

2 Call the f_SetPlatform global function:

f_SetPlatform(inv_platform, TRUE)

Usage of platform functions Variable type

Throughout your application Global variable or as an instance variable on
n_cst_appmanager

Within a single object Instance variable for the object

Within a single script Local variable

Selection service

106 PowerBuilder

The f_SetPlatform global function automatically creates the platform-
specific n_cst_platform descendant.

v To call a platform service function:

• Call the function, using dot notation to specify the object instance.

This example calls the of_GetFreememory function and displays this
value in the status bar. The example assumes an inv_platform instance
variable:

Long ll_free_memory

ll_free_memory = &
inv_platform.of_GetFreeMemory()

gnv_app.of_GetFrame().SetMicroHelp &
("Free memory: " + String(ll_free_memory))

v To destroy the platform service:

• Use the DESTROY statement:

DESTROY inv_platform

Selection service
Overview The PFC selection service provides a function that displays the w_selection

dialog box, which allows users to select a row. When the user clicks OK, the
function returns the values in one or more columns for the selected row.

PFC enables the selection service through the n_cst_selection user object.

Usage You use the selection service’s of_Open function to display a dialog box
allowing users to choose an item that your application then processes.

There are three basic versions of the of_Open function. Each displays different
information in w_selection:

• W_selection retrieves and displays all rows for a specified DataWindow
object

• W_selection displays a passed set of rows

• W_selection displays rows that have been saved as part of the passed
DataWindow object

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 107

Define n_cst_selection as a global, instance, or local variable, as appropriate
for your application:

v To enable the selection service:

• Declare a variable of type n_cst_selection:

n_cst_selection inv_selection

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

v To use the selection service:

1 Declare variables used by of_Open:

n_cst_selection lnv_selection
Any la_selected[]
String ls_columns[]
Integer li_count

2 Specify the columns whose values are to be returned:

ls_columns[1] = "emp_id"
ls_columns[2] = "emp_lname"
ls_columns[3] = "emp_fname"

3 Display the w_selection window by calling the of_Open function (this
version of of_Open causes w_selection to retrieve all rows in the specified
DataWindow object):

lnv_selection.of_Open &
 ("d_empall", la_selected, SQLCA, ls_columns)

4 Access the returned column values as appropriate (this example displays
returned values in a ListBox):

FOR li_count = 1 to UpperBound(la_selected)
 lb_selected.AddItem &
 (String(la_selected[li_count]))
NEXT

Usage of selection service functions Variable type

Throughout your application Global variable or as an instance
variable on n_cst_appmanager

Within a single object Instance variable for the object

Within a single script Local variable

SQL parsing service

108 PowerBuilder

SQL parsing service
Overview The PFC SQL parsing service provides functions that you can call to assemble

and parse SQL statements.

PFC enables the SQL parsing service through the n_cst_sql user object.

Usage You can use the SQL parsing service to:

• Build a SQL statement from its component parts

• Parse a SQL statement into its component parts

Define n_cst_sql as a global, instance, or local variable, as appropriate for your
application:

v To enable the SQL parsing service:

• Declare a variable of type n_cst_sql:

n_cst_sql inv_sql

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

v To build a SQL statement from its component parts:

• Call the of_Assemble function, using dot notation to specify the object
instance.

This example assumes an inv_sql instance variable:

String ls_sql
n_cst_sqlattrib lnv_sqlattrib[]

lnv_sqlattrib[1].s_verb = sle_verb.text
lnv_sqlattrib[1].s_tables = sle_tables.text
lnv_sqlattrib[1].s_columns = sle_columns.text
lnv_sqlattrib[1].s_values = sle_values.text
lnv_sqlattrib[1].s_where = sle_where.text
lnv_sqlattrib[1].s_order = sle_order.text
lnv_sqlattrib[1].s_group = sle_group.text
lnv_sqlattrib[1].s_having = sle_having.text

Usage of SQL parsing functions Variable type

Throughout your application Global variable or as an instance variable
on n_cst_appmanager

Within a single object Instance variable for the object

Within a single script Local variable

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 109

ls_sql = inv_sql.of_Assemble(lstr_sql)
MessageBox("SQL", ls_sql)

v To parse a SQL statement into its component parts:

• Call the of_Parse function, using dot notation to specify the object
instance.

This example assumes an inv_sql instance variable:

String ls_sql
Integer li_return
n_cst_sqlattrib lnv_sqlattrib[]

li_return = inv_sql.of_Parse &
(mle_sql.text, lnv_sqlattrib)

IF li_return > 0 THEN
sle_verb.text= lnv_sqlattrib[1].s_verb
sle_tables.text = lnv_sqlattrib[1].s_tables
sle_columns.text =

lnv_sqlattrib[1].s_columns
sle_values.text = lnv_sqlattrib[1].s_values
sle_where.text = lnv_sqlattrib[1].s_where
sle_order.text = lnv_sqlattrib[1].s_order
sle_group.text = lnv_sqlattrib[1].s_group
sle_having.text= lnv_sqlattrib[1].s_having

END IF

String-handling service
Overview The PFC string-handling service provides functions that you can call to operate

on strings.

PFC enables the string-handling service through the n_cst_string user object.

Usage You can use the string-handling service to perform many string operations,
including:

• Separating a delimited string into an array

• Converting an array into a delimited string

• Determining if a string is lowercase, uppercase, alphabetic, or
alphanumeric.

• Global replacing

String-handling service

110 PowerBuilder

• Counting the number of occurrences of a specified string

• Removing spaces and nonprintable characters from the beginning or end
of a string

• Determining if a string is a comparison or arithmetic operator

• Converting all the words in a string to initial cap

Define n_cst_string as a global, instance, or local variable, as appropriate for
your application:

v To enable the string-handling service:

• Declare a variable of type n_cst_string:

n_cst_string inv_string

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

v To call a string-handling service function:

• Call the function, using dot notation to specify the object instance.

This example, which is from the n_cst_dwsrv_report of_AddText
function, calls the of_ParseToArray function to convert the as_text string
into elements in the ls_line array. The example uses an lnv_string local
variable:

n_cst_string lnv_string
Integer li_newlines
String ls_line[]
...
li_newlines = lnv_string.of_ParseToArray &

(as_text, "~r~n", ls_line)

Usage of string-handling functions Variable type

Throughout your application Global variable or as an instance
variable on n_cst_appmanager

Within a single object Instance variable for the object

Within a single script Local variable

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 111

Metaclass service
Overview The metaclass service contains functions that provide information on the

functions, events, and variables defined within another object.

PFC enables the string-handling service through the n_cst_metaclass user
object.

Usage The most common use of the metaclass service is to determine whether an
object function or event exists before calling it.

v To use the metaclass service:

1 Create a variable of type n_cst_metaclass:

boolean lb_defined
n_cst_metaclass lnv_metaclass
classdefinition lcd_obj
String ls_args[]
Integer li_rc

Because PFC defines this object with the autoinstantiate option, there is no
need to code CREATE or DESTROY statements.

2 Call n_cst_metaclass functions as needed:

lcd_obj = FindClassDefinition("w_sheet")
lb_defined = lnv_metaclass.of_isFunctionDefined &
 (lcd_obj,"of_Validation", ls_args)
If lb_defined Then
 // Qualify with instance of w_sheet descendant.
 li_rc = w_sheet.Function Dynamic &
 of_Validation ()

If li_rc < 0 Then Return -1
End If

Logical unit of work service
Overview The logical unit of work service provides support for self-updating objects. A

self-updating object encapsulates all required update functionality by
implementing a set of functions (self-updating object API) that n_cst_luw calls
during the save process. These functions call events that update the object as
appropriate. The logical unit of work service calls these functions
automatically as part of the default save process.

Logical unit of work service

112 PowerBuilder

PFC includes several self-updating objects, including:

U_dw
N_ds
U_lvs
U_tab
U_tvs
U_base
W_master

Examine these objects to see implementations of the self-updating object API.

The default w_master pfc_Save process uses the logical unit of work service to
update all updatable self-updating objects on a window.

See “Using the pfc_Save process” on page 195.

Implementing self-updating objects
The logical unit of work service updates all referenced, updatable self-updating
objects.

Most self-updating objects are not updatable by default
To ensure backward compatibility, u_dw is the only self-updating object that is
updatable by default.

The functions that make up the complete self-updating object API are:

Use the Browser for information on the signatures of these functions and
events.

Function Purpose

of_AcceptText Calls the pfc_AcceptText event, which calls AcceptText
functions as appropriate

of_UpdatesPending Calls the pfc_UpdatesPending event, which determines
whether the object has been updated

of_Validation Calls the pfc_Validation event, which validates data for the
object

of_UpdatePrep Calls the pfc_UpdatePrep event, which prepares the object
for update as appropriate

of_Update Calls the pfc_Update event, which updates the database

of_PostUpdate Calls the pfc_PostUpdate event, which performs post-
update processing as appropriate

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 113

Writing your own self-
updating objects

To write a self-updating object, implement the functions listed above and
ensure that a reference to the object is in the array passed to the corresponding
n_cst_luw functions.

Extending the save
process

By default, the w_master pfc_Save process updates all modified DataWindows
within the window. You can extend this process as follows:

• Other self-updating objects You can define other self-updating objects
as updatable by calling the of_SetUpdateable function in the object’s
Constructor event. This example is from a u_lvs-based ListView:

this.of_SetUpdateable(TRUE)

Now the logical unit of work service will call functions to update the u_lvs
data source as part of a default save process.

• DataStores You can add one or more DataStores to the list of objects to
be updated by calling the w_master of_SetUpdateObjects function:

PowerObject lpo_objs[]
Integer li_count

lpo_objs = this.control
li_count = UpperBound(lpo_objs)
li_count++
lpo_objs[li_count] = ids_data
this.of_SetUpdateObjects(lpo_objs)

• Additional windows You can add one or more windows to the list of
objects to be updated by calling the w_master of_SetUpdateObjects
function:

PowerObject lpo_objs[]
Integer li_count

lpo_objs = this.control
li_count = UpperBound(lpo_objs)
li_count++
// Update w_other as well as this window
lpo_objs[li_count] = w_other
this.of_SetUpdateObjects(lpo_objs)

List service

114 PowerBuilder

List service
Overview Many applications need to maintain information in linked lists. The PFC list

service provides objects and functions you use to create and manipulate linked
lists. It supports these types of lists:

• Basic linked list (sorted or unsorted)

• Stack (LIFO)

• Queue (FIFO)

• Tree (balanced binary tree)

A list is made up of
nodes

A linked list is made up of nodes. Each node contains:

• A reference to the previous item in the list

• A reference to the next item in the list

• A key

• Data

• Balance information (tree lists only)

When adding a node to a linked list, you provide the key and data; the service
objects maintain references to the previous and next items.

About sorted lists A tree list is sorted automatically. You can also use the n_cst_list object to
maintain a sorted linked list.

Using a basic list
A basic linked list differs from a stack and a queue in that nodes are not
removed as they are accessed.

PFC enables basic list processing through the n_cst_list user object.

Creating a basic list When you create a basic list, you create and populate instances of
n_cst_linkedlistnode and add them to the list.

v To create a basic list:

1 Declare an instance variable of type n_cst_list:

n_cst_list inv_list

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 115

2 Add nodes to the list. To do this, create an instance of
n_cst_linkedlistnode, specify a key and data by calling the n_cst_node
of_SetKey and of_SetData functions, then add the node to the list by
calling of_Add. This example adds a list item using a SingleLineEdit as
the source:

n_cst_linkedlistnode lnv_node
Integer li_return

lnv_node = CREATE n_cst_linkedlistnode
lnv_node.of_SetKey(sle_1.text)
lnv_node.of_SetData(sle_1.text)
li_return = inv_list.of_Add(lnv_node)

Creating a sorted list The default PFC sorted list object maintains a list of nodes in ascending order,
by key value. Duplicates are allowed by default; but you can disallow them if
necessary. A sorted list differs from a stack and a queue in that nodes are not
removed as they are accessed.

You can customize sort processing by extending the
n_cst_linkedlistnodecompare of_Compare function.

See “Creating a comparison object” on page 124.

PFC enables sorted list processing through the n_cst_list user object.

v To create a sorted list:

1 Declare an instance variable of type n_cst_list:

n_cst_list inv_sortedlist

2 Specify that the list is sorted:

inv_sortedlist.of_SetSorted(TRUE)

3 (Optional) Specify whether the list allows duplicate entries (by default,
duplicates are allowed):

inv_sortedlist.of_SetDuplicatesAllowed(FALSE)

4 (Optional) Specify a customized node comparison object. This example
assumes an inv_customcompare instance variable of type
n_cst_customcompare:

inv_customecompare = CREATE n_cst_customcompare
inv_sortedlist.of_SetCompare(n_cst_customcompare)

List service

116 PowerBuilder

5 Add nodes to the list. To do this, first create an instance of
n_cst_linkedlistnode, specify a key and data by calling the n_cst_node
of_SetKey and of_SetData functions, then add the node to the list by
calling of_Add. This example adds a sorted list item using a
SingleLineEdit as the source:

n_cst_linkedlistnode lnv_node
Integer li_return

lnv_node = CREATE n_cst_linkedlistnode
lnv_node.of_SetKey(sle_1.text)
lnv_node.of_SetData(sle_1.text)
li_return = inv_list.of_Add(lnv_node)

Finding nodes in a list To find nodes you must first know the key. PFC does not remove list nodes as
they are accessed.

v To find a node in a sorted list:

1 Define variables for two nodes:

n_cst_linkedlistnode lnv_node, lnv_temp

2 Create one of the nodes:

lnv_temp = CREATE n_cst_linkedlistnode

3 Populate the empty node with the key of the node you want to find:

lnv_temp.of_SetKey(sle_2.text)

4 Call the of_Find function to access the requested node. This function’s
first argument returns a reference to the requested node:

inv_list.of_Find(lnv_node, lnv_temp)

5 Access the key and data of the found node by calling the
n_cst_linkedlistnode of_GetKey and of_GetData functions.

6 Destroy the temporary node:

DESTROY lnv_temp

Do not destroy lnv_node
The lnv_node variable is a reference to the node in the list. If you destroy it, the
list becomes corrupted. Instead, use of_Remove as described in the next
procedure.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 117

Accessing the entire
list at once

You can use the of_Get function to retrieve all nodes in the list.

v To retrieve the entire list in one function call:

1 Define an array of type n_cst_linkedlistnode to contain the retrieved
nodes:

n_cst_linkedlistnode lnv_nodes[]
Integer li_return, li_count
Any la_data
String ls_data

2 Call the of_Get function:

li_return = inv_list.of_Get(lnv_nodes)

3 Process the nodes as appropriate. This example displays node data in a
ListBox:

lb_1.Reset()
FOR li_count = 1 to li_return

lnv_nodes[li_count].of_GetData(la_data)
ls_data = String(la_data)
lb_1.AddItem(ls_data)

NEXT

This technique also applies to stacks, queues, and trees.

Removing nodes from
a list

You must explicitly remove nodes from a list (they are not removed
automatically, as in a stack or a queue).

v To remove a node from a list:

1 Define variables for two nodes:

n_cst_linkedlistnode lnv_node, lnv_temp

2 Create one of the nodes:

lnv_temp = CREATE n_cst_linkedlistnode

3 Populate the empty node with the key of the node you want to remove:

lnv_temp.of_SetKey(sle_2.text)

4 Call the of_Find function to access the requested node. This function
returns a reference to the requested node (the first argument):

inv_list.of_Find(lnv_node, lnv_temp)

List service

118 PowerBuilder

5 Remove the node from the list by calling the of_Remove function:

inv_list.of_Remove(lnv_node)

6 Destroy the temporary node:

DESTROY lnv_temp

Destroying a list When you no longer need the list, destroy the list and all of its nodes.

v To destroy a list and all of its nodes:

• Destroy all nodes in the list by calling of_Destroy:

Long ll_count

ll_count = inv_list.of_Destroy()
MessageBox("Destroy List", &

String(ll_count) + " nodes destroyed")

Using a stack
A stack maintains a last-in first-out (LIFO) list. When you add a new node to
the stack, the stack object places it at the beginning; when you get a node from
the stack, the stack object accesses it from the beginning of the list, removing
it in the process.

PFC enables stack processing through the n_cst_stack user object.

Creating a stack When you create a stack, you create and populate instances of
n_cst_linkedlistnode and push them onto the stack.

v To create a stack:

1 Declare an instance variable of type n_cst_stack:

n_cst_stack inv_stack

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

2 Add nodes to the stack. To do this, create an instance of the node, specify
a key and data by calling the n_cst_linkedlistnode of_SetKey and
of_SetData functions, then add the node to the stack by calling of_Push
(this example creates a stack using a SingleLineEdit as the source):

n_cst_linkedlistnode lnv_node
Integer li_return

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 119

lnv_node = CREATE n_cst_linkedlistnode
lnv_node.of_SetKey(sle_1.text)
lnv_node.of_SetData(sle_1.text)
li_return = inv_stack.of_Push(lnv_node)

Removing nodes from
a stack

You can only access a node from the beginning of the stack (the last node
added). You pop a stack to access a node.

v To remove a node from the stack:

1 Declare a variable of type n_cst_linkedlistnode to contain the node you
want to remove from the stack:

n_cst_linkedlistnode lnv_node

2 Remove the node from the stack by calling of_Pop:

inv_stack.of_Pop(lnv_node)

3 Access the key and data as necessary by calling the n_cst_linkedlistnode
of_GetKey and of_GetData functions:

Any la_key

IF IsValid(lnv_node) THEN
lnv_node.of_GetKey(la_key)
MessageBox("Stack", &

 "Key is " + String(la_key))
ELSE

MessageBox("Stack", "List is empty")
END IF

Destroying a stack When you no longer need the stack, destroy the stack and all of its nodes.

v To destroy a stack:

• Destroy all nodes in the stack by calling of_Destroy:

Long ll_count

ll_count = inv_stack.of_Destroy()
MessageBox("Destroy", &

String(ll_count) + " nodes destroyed")

List service

120 PowerBuilder

Using a queue
A queue maintains a first-in, first-out (FIFO) list. When you add a new node to
the queue, the queue object places it at the end; when you get a node from the
queue, the queue object accesses it from the beginning of the list, removing it
in the process.

PFC enables queue processing through the n_cst_queue user object.

Creating a queue When you create a queue, you create and populate instances of
n_cst_linkedlistnode and add them to the queue.

v To create a queue:

1 Declare an instance variable of type n_cst_queue:

n_cst_queue inv_queue

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

2 Add nodes to the queue. To do this, create an instance of the node, specify
a key and data by calling the n_cst_linkedlistnode of_SetKey and
of_SetData functions, then add the node to the queue by calling of_Put.
This example creates a queue using a SingleLineEdit as the source:

n_cst_linkedlistnode lnv_node
Integer li_return

lnv_node = CREATE n_cst_linkedlistnode
lnv_node.of_SetKey(sle_1.text)
lnv_node.of_SetData(sle_1.text)
li_return = inv_queue.of_Put(lnv_node)

Removing nodes from
a queue

You can only access nodes from the beginning of a queue (the oldest node in
the list).

v To remove a node from the queue:

1 Declare a variable of type n_cst_linkedlistnode to contain the node you
want to remove from the queue:

n_cst_linkedlistnode lnv_node

2 Remove the node from the queue by calling of_Get:

inv_queue.of_Get(lnv_node)

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 121

3 Access the key and data as necessary by calling the n_cst_node of_GetKey
and of_GetData functions:

Any la_key

IF IsValid(lnv_node) THEN
lnv_node.of_GetKey(la_key)
MessageBox("Queue", &
 "Key is " + String(la_key))
ELSE
MessageBox("Queue", "List is empty")
END IF

Destroying a queue When you no longer need the queue, destroy the list and all of its nodes.

v To destroy a queue:

• Destroy all nodes in the queue by calling of_Destroy:

Long ll_count

ll_count = inv_queue.of_Destroy()
MessageBox("Destroy All", &

String(ll_count) + " nodes destroyed")

Using a tree
The PFC tree list object maintains a balanced binary tree of nodes in ascending
order, by key value. This object provides all the functionality of a sorted list
with no duplicates allowed. It differs from a stack and a queue in that nodes
are not removed as they are accessed.

The balanced binary tree maintained by the PFC tree list object is never more
than one level out of balance. Because the tree structure reduces the number of
nodes that must be searched during find operations, it provides better
performance than a sorted list.

You can customize sort processing by extending the n_cst_treenodecompare
of_Compare function. See “Creating a comparison object” on page 124.

PFC enables tree processing through the n_cst_tree user object.

Creating a tree When you create a tree, you create and populate instances of n_cst_treenode
and add them to the tree.

List service

122 PowerBuilder

v To create a tree:

1 Declare an instance variable of type n_cst_tree:

n_cst_tree inv_tree

Because PFC defines this object with the autoinstantiate option, you don’t
need to code CREATE or DESTROY statements.

2 (Optional) Specify a customized node comparison object. This example
assumes an inv_customcompare instance variable of type
n_cst_customcompare:

inv_customecompare = CREATE n_cst_customcompare
inv_tree.of_SetCompare(inv_customcompare)

3 Add nodes to the tree. To do this, create an instance of the node by calling
of_Create, specify a key and data by calling the n_cst_treenode of_SetKey
and of_SetData functions, then add the node to the tree by calling the
of_Add function. This example creates a tree using a SingleLineEdit as the
source:

n_cst_treenode lnv_node
Integer li_return

inv_tree.of_Create(lnv_node)
lnv_node.of_SetKey(sle_1.text)
lnv_node.of_SetData(sle_1.text)
li_return = inv_tree.of_Add(lnv_node)

Finding nodes in a
tree

You find nodes in a balanced binary tree. They aren’t removed from the list as
they are accessed.

v To find a node in a tree list:

1 Create an empty node:

n_cst_treenode lnv_node, lnv_temp

inv_tree.of_Create(lnv_temp)

2 Populate the empty node with the key of the node you want to find:

lnv_temp.of_SetKey(li_key)

3 Call the of_Find function to access the requested node. This function’s
first argument returns a reference to the requested node:

inv_tree.of_Find(lnv_node, lnv_temp)

4 Access the key and data of the found node by calling the n_cst_node
of_GetKey and of_GetData functions.

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 123

5 Destroy the temporary node:

DESTROY lnv_temp

Do not destroy lnv_node
The lnv_node variable is a reference to the node in the tree list. If you destroy
it, the list becomes corrupted. Instead, use of_Remove as described in the next
procedure.

Removing nodes from
a tree

You must explicitly remove nodes from a tree list (they are not removed
automatically, as in a stack or a queue).

v To remove a node from a tree list:

1 Create an empty node:

n_cst_treenode lnv_node, lnv_temp

inv_tree.of_Create(lnv_temp)

2 Populate the empty node with the key of the node you want to delete:

lnv_temp.of_SetKey(li_key)

3 Call the of_Find function to access the requested node. This function
returns a reference to the requested node (the first argument):

inv_tree.of_Find(lnv_node, lnv_temp)

4 Remove the node from the tree list by calling the of_Remove function:

inv_tree.of_Remove(lnv_node)

5 Destroy the temporary node:

DESTROY lnv_temp

Destroying a tree When you no longer need the tree list, destroy the list and all of its nodes.

v To destroy a tree list:

• Destroy all nodes in the tree list by calling of_Destroy:

Long ll_count

ll_count = inv_tree.of_Destroy()
MessageBox("Destroy All", &

String(ll_count) + " nodes destroyed")

List service

124 PowerBuilder

Creating a comparison object
At the core of any sort processing is a greater than/less than comparison. The
PFC sorted list and tree list objects use the n_cst_nodecompare of_Compare
function to perform this comparison. By default, the n_cst_nodecompare
of_Compare function performs a comparison of two nodes as follows:

• Compares key values (not data values)

• Works for simple data types only (that is, all but object instances and
enumerated data types)

• Returns values that the sorted list and tree list objects use to maintain an
ascending sorted list

If your sorted list requires different comparison logic, you must inherit from
n_cst_nodecompare and override the of_Compare function.

Custom comparison
objects

If your sorted list requires different comparison logic, you need to create a
descendant of n_cst_nodecompare with an overridden of_Compare function
and enable that object at execution time.

v To create a customized comparison object:

1 Use the User Object painter to create a customized n_cst_nodecompare
descendant.

2 In the customized n_cst_nodecompare descendant, implement a Public
of_Compare function to compare key values in the two passed nodes. This
function should take two arguments of type n_cst_node (passed by value)
and return Integer values as follows:

• 1 The key of the second node is greater than the key of the first node

• 0 The key of the second node is equal to the key of the first node

• -1 The key of the second node is less than the key of the first node

In this example, each passed node contains a reference to a custom class
user object with state and last name instance variables to compare:

Any la_key1, la_key2
String ls_keytype1, ls_keytype2
n_cst_empinfo lnv_emp1, lnv_emp2

IF NOT IsValid(anv_node1) THEN Return -3
IF NOT IsValid(anv_node2) THEN Return -3

anv_node1.of_GetKey(la_key1)
IF IsNull(la_key1) THEN Return -4

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 125

anv_node2.of_GetKey(la_key2)
IF IsNull(la_key2) THEN Return -4
ls_keytype1 = ClassName(la_key1)
ls_keytype2 = ClassName(la_key2)

// Check data type of node data.
IF ls_keytype1 = "" THEN Return -6
IF IsNull(ls_keytype1) THEN Return -6
IF ls_keytype1 <> "n_cst_empinfo" THEN Return -6
IF ls_keytype2 = "" THEN Return -6
IF IsNull(ls_keytype2) THEN Return -6
IF ls_keytype2 <> "n_cst_empinfo" THEN Return -6

lnv_emp1 = la_key1 // Cast to n_cst_empinfo
lnv_emp2 = la_key2
// First compare State.
// Additional error checking omitted.
IF lnv_emp1.is_state < lnv_emp2.is_state THEN

Return -1
ELSEIF lnv_emp1.is_state > lnv_emp2.is_state THEN

Return 1
ELSE // States are equal. Compare last name.
 IF lnv_emp1.is_lname < lnv_emp2.is_lname THEN
 Return -1

ELSEIF &
 lnv_emp1.is_lname > lnv_emp2.is_lname THEN
 Return 1

ELSE // State and lname are equal.
 Return 0

END IF
END IF

v To enable a customized comparison object at execution time:

1 In the object that uses PFC list processing, define an instance variable that
uses your customized n_cst_nodecompare object as the data type:

n_cst_customcompare inv_customcompare

2 Create an instance of the customized comparison object and call the
n_cst_list of_SetCompare function:

inv_customcompare = CREATE n_cst_customcompare

inv_sortedlist.of_SetCompare(inv_customcompare)

Timing service

126 PowerBuilder

3 Initialize objects before adding them to the list. In the example ahead, you
create an array of n_cst_empinfo objects and initialize them with last
name, first name, and state.

4 Create nodes, set node values, and add them to the list as necessary:

n_cst_node lnv_node
Integer li_i

FOR li_i = 1 TO UpperBound(inv_empinfo)
inv_tree.of_Create(lnv_node)
lnv_node.of_SetKey(inv_empinfo[li_i])
lnv_node.of_SetData(inv_empinfo[li_i])
inv_tree.of_Add(lnv_node)
NEXT

Timing service
Overview The timing service works with PFC’s n_tmg Timing object to provide single

and multiple timers. These timers are especially useful with standard class and
custom class user objects.

PFC enables the timing service through n_tmg, n_cst_tmgsingle, and
n_cst_tmgmultiple.

Using single timers Use n_cst_tmgsingle to maintain a single timer. You establish the timer by
calling the of_Register function, specifying the object to be notified, the event
to be notified, and the timer interval.

v To use a single timer:

1 Establish an instance variable of type n_tmg:

n_tmg itmg_timer

2 Create the instance of n_tmg:

itmg_timer = CREATE n_tmg

3 Enable the single timer service:

itmg_timer.of_SetSingle(TRUE)

CHAPTER 4 Using PFC Services

PFC Library User’s Guide 127

4 Register the object and event to be notified (the object is a window in this
example):

itmg_timer.inv_single.of_Register &
 (this, "ue_showtimer", 15)

5 Code the event to receive notification from n_cst_tmgsingle
(ue_showtimer in this example).

Using multiple timers Use n_cst_tmgmultiple to maintain multiple timers. You establish each timer
by calling the of_Register function, specifying the object to be notified, the
event to be notified, and the timer interval.

v To use multiple timers:

1 Establish an instance variable of type n_tmg:

n_tmg itmg_timer

2 Create the instance of n_tmg:

itmg_timer = CREATE n_tmg

3 Enable the multiple timer service:

itmg_timer.of_SetMultiple(TRUE)

4 Register the objects and events to be notified:

itmg_timer.inv_multiple.of_Register &
 (iw_sheet1, "ue_timer", 7)
itmg_timer.inv_multiple.of_Register &
 (iw_sheet2, "ue_timer", 11)
itmg_timer.inv_multiple.of_Register &
 (iw_sheet3, "ue_timer", 13)

5 Code the events to receive notification from n_cst_tmgmultiple (ue_timer
in this example).

Timing service

128 PowerBuilder

PFC Library User’s Guide 129

C H A P T E R 5 Using PFC Visual Controls

About this chapter This chapter explains how to use PFC standard visual user objects and
custom visual user objects.

Contents

About PFC visual controls
PFC contains two types of visual controls:

• Standard visual user objects Consist of a single PowerBuilder
control. PFC adds logic to enhance the control’s functionality and
reusability. The u_lb ListBox control is an example of a standard
visual user object.

• Custom visual user objects Consist of several controls that
function as a unit. PFC adds logic to perform the appropriate
processing. The u_calculator calculator control is an example of a
custom visual object.

Standard class user objects
PFC also features a set of standard class user objects, such as n_tr
(transaction), n_cn (connection), and n_msg (message).

For information on using standard class user objects, see Chapter 3, “PFC
Programming Basics”.

Topic Page

About PFC visual controls 129

Using standard visual user objects 130

Using custom visual user objects 169

Using standard visual user objects

130 PowerBuilder

Using standard visual user objects
PFC contains standard visual user objects for all window controls. Standard
visual user objects include:

• Basic window controls (such as CommandButton, RadioButton, and
CheckBox)

• More complex window controls (such as DataWindow, ListView,
TreeView, RichTextEdit, and Tab)

Using basic functionality
A standard visual user object inherits its definition from one standard
PowerBuilder control. PFC extends each control as appropriate, and you can
extend them further.

The PFC standard visual user objects include the following basic functionality,
depending on their type:

• Cut, copy, and paste Editable controls include Cut, Copy, Paste, and
other editing functions.

• Pop-up menu Editable controls include code in the RButtonUp event to
display a pop-up menu. This menu enables users to Cut, Copy, and Paste
text into the current visual control.

• Autoscroll The DropDownListBox and DropDownPictureListBox
controls provide functionality that scrolls the list automatically as the user
types.

• Selection inversion The ListBox and PictureListBox controls provide
functionality that invert the current selection.

• Autoselect Certain editable controls provide functionality that select
text automatically when the control receives focus.

• MicroHelp display Most controls contain precoded functionality in the
GetFocus event to display a tag value in the microhelp area of an MDI
frame

For how to place a standard visual user object on a window, see the
PowerBuilder User’s Guide.

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 131

Cut, copy, paste, and other editing functions

All editable PFC standard visual user objects include user events that perform
text editing functions. Editable PFC visual user objects include:

PFC implements text editing functions by defining user events as appropriate
for editable standard visual user objects:

When you use the PFC standard visual user objects as window controls, editing
functions are enabled automatically when you use a menu that descends from
the PFC m_master menu. M_master includes an Edit menu that has menu items
for all editing functions. These Edit menu items use the message router to call
the appropriate user event in the current control. You can also add code to
command buttons and other controls to call these user events.

Using right-mouse button support

All editable PFC standard visual user objects include right mouse button
support, displaying one of the following pop-up menus:

Control PFC visual user object

DropDownListBox u_ddlb

DropDownPictureListBox u_ddplb

DataWindow u_dw

EditMask u_em

MultiLineEdit u_mle

OLE custom control u_oc

RichTextEdit u_rte

SingleLineEdit u_sle

Text editing function User event

Clear pfc_Clear

Copy pfc_Copy

Cut pfc_Cut

Paste pfc_Paste

Select All pfc_SelectAll

Undo pfc_Undo

Paste Special pfc_PasteSpecial (u_oc only)

Using standard visual user objects

132 PowerBuilder

These pop-up menus all include standard text editing functions. However, text
editing functions are not enabled or visible in all pop-up menus by default.

Customizing menu
display

All controls that provide right-mouse button support include a
pfc_PreRMBMenu event for customizing the items that appear on a pop-up
menu. PFC calls this event after the menu is created but before it is displayed.

v To customize pop-up menu display:

1 (Optional) Use the Menu painter to create additional items for the pop-up
menu.

2 After placing the user object in a window, add logic to the
pfc_PreRMBMenu event to hide or disable menu items. This example
disables the m_dw Insert, Add Row, and Delete menu items (am_dw is an
argument passed by reference to pfc_PreRMBMenu):

am_dw.m_table.m_insert.Enabled = FALSE
am_dw.m_table.m_addrow.Enabled = FALSE
am_dw.m_table.m_delete.Enabled = FALSE

Disabling right-mouse
button support

You can disable right-mouse button support entirely. You may want to do this
for a read-only control, for example.

v To disable right-mouse button support for editable controls:

• After placing the user object in a window, add code to the control’s
Constructor event to set the ib_rmbmenu instance variable to FALSE:

this.ib_rmbmenu = FALSE

U_dw disables items automatically
The u_dw DataWindow control disables pop-up menu items automatically
for read-only DataWindow objects.

Menu Used by

m_edit U_ddlb
U_ddplb
U_em
U_mle
U_rte
U_sle

m_dw U_dw

m_lvs U_lvs

m_oc U_oc

m_tvs U_tvs

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 133

Using autoscroll in drop-down lists

The u_ddlb DropDownListBox and u_ddplb DropDownPictureListBox
controls feature autoscrolling: if you press r, the control scrolls to the first entry
beginning with r, selecting the remaining text; if you then press i, the control
scrolls to the first entry beginning with ri.

This capability differs from the standard DropDownListBox and
DropDownPictureListBox behavior, which scrolls based on the first letter
only: if you press r, the control scrolls to the first entry beginning with r; if you
then press i, the control scrolls to the first entry beginning with i.

For information on autoscroll in DropDownDataWindows, see “Drop-down
DataWindow search service” on page 67.

By default, autoscroll is disabled.

v To enable autoscroll:

• After placing the user object in a window, add code to the Constructor
event to set the ib_search instance variable to TRUE:

this.ib_search = TRUE

Using autoselect

These editable controls feature automatic selection:

U_ddlb
U_ddplb
U_em
U_mle
U_sle

When autoselect is enabled, PFC automatically selects all text in the control
when it receives focus.

By default, autoselect is disabled.

v To enable autoselect:

• After placing the user object in a window, add code to the Constructor
event to set the ib_autoselect instance variable to TRUE:

this.ib_autoselect = TRUE

Using standard visual user objects

134 PowerBuilder

Using selection inversion in list boxes

The u_lb ListBox and the u_plb PictureListBox controls feature selection
inversion. When you call the control’s pfc_InvertSelect event, PFC highlights
previously unhighlighted items and unhighlights previously highlighted items.
Selection inversion is a feature found in many Windows 95 applications.

Extended select or multiselect
To use this feature, you must enable either the Extended Select property or the
Multi Select property for the control.

v To enable selection inversion, use either of the following techniques:

1 Add a menu item that uses the message router to call the
pfc_InvertSelection event. This example adds an Invert Selection menu
item that calls the of_SendMessage function to trigger the
pfc_InvertSelection event (this method requires that the ListBox or
PictureListBox have focus when the user selects the menu item):

of_SendMessage("pfc_InvertSelection")

2 Add a window control that calls the pfc_InvertSelection event directly
(this example is from a CommandButton Clicked event):

lb_choices.Event pfc_InvertSelection()

Using the GetFocus event

PFC standard visual controls include logic in the GetFocus event to provide
focus-related functionality. This event calls the window’s
pfc_ControlGotFocus user event, which (when MicroHelp display is enabled)
updates MicroHelp for controls placed on descendants of w_sheet.

The w_sheet window extends the pfc_ControlGotFocus user event to add
automatic MicroHelp display. This feature displays text from the control’s tag
value in the MDI frame’s status bar.

v To update MicroHelp automatically in a sheet window:

1 Call the n_cst_appmanager of_SetMicroHelp function to enable
MicroHelp display:

gnv_app.of_SetMicroHelp(TRUE)

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 135

2 Define tag values for each of the sheet’s controls. Use the following
format:

MicroHelp=tagtext

PFC uses the specified tag text to update MicroHelp automatically when
the control gets focus. If there are multiple items in the tag, separate them
with semicolons.

Using advanced functionality
To get the most out of PFC, you need to program using advanced controls for
which PFC provides additional capabilities:

Using the u_dw DataWindow control

Most production-strength PowerBuilder applications make intense use of
DataWindow controls. The u_dw DataWindow control contains extensive
built-in methods including:

• Functions to enable and disable DataWindow services

• A function to set the Transaction object

• Events to retrieve rows for DataWindows and DropDownDataWindows

• Events to control DataWindow update

• Events to control printing

Integration with PFC menus
Many of the events described in this section are called automatically by menus
that descend from the PFC m_master menu. For example, when you select
File>Save from the menu bar, PFC calls the pfc_Save event.

Control PFC visual user object

DataWindow U_dw

ListView U_lvs

TreeView U_tvs

RichTextEdit U_rte

OleControl U_oc

Tab U_tab

Tab page U_tabpg

Using standard visual user objects

136 PowerBuilder

Enabling DataWindow
services

PFC provides a variety of DataWindow services that you can use to add
production-strength features to an application. Many of these services require
little or no coding on your part.

v To use DataWindow services:

1 Place the u_dw DataWindow visual user object on the window.

2 Determine which DataWindow services are appropriate for the
DataWindow object displayed in the u_dw-DataWindow control.

3 Enable the appropriate DataWindow services, using the u_dw
of_Setservicename functions (this example from the DataWindow
control’s Constructor event enables the row selection, row management,
and sort services):

this.of_SetRowSelect(TRUE)
this.of_SetRowManager(TRUE)
this.of_SetSort(TRUE)

4 Establish the Transaction object for the DataWindow:

this.of_SetTransObject(SQLCA)

5 Call other functions as necessary to initialize services (this example sets
the row selection style, specifies the Sort dialog box style, and enables
column header sorting):

this.inv_rowselect.of_SetStyle &
 (this.inv_rowselect.EXTENDED)
this.inv_sort.of_SetStyle &
 (this.inv_sort.DRAGDROP)
this.inv_sort.of_SetColumnHeader(TRUE)

6 Call DataWindow service events and functions as necessary in your
application’s functions and events. In many cases you don’t have to code
anything to realize the service’s benefits. This example calls the
pfc_SortDlg event to display the Sort dialog box:

dw_list.Event pfc_SortDlg()

Disabling services
The u_dw Destructor event destroys enabled services automatically. In
most cases you don’t destroy a service explicitly.

For specific usage information on individual DataWindow services, see
“DataWindow services” on page 63.

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 137

Setting the
Transaction object

As shown in the preceding example, you establish a DataWindow’s
Transaction object by calling the u_dw of_SetTransObject function.

The of_SetTransObject function ensures that the passed Transaction object is
valid, sets the Transaction object, and saves a reference to the Transaction
object in the itr_object instance variable.

The Transaction object must be of type n_tr.

When using the linkage service
For DataWindows that use the linkage service, call the n_cst_dwsrv_linkage
of_SetTransObject function on the top-level DataWindow after all
DataWindows have been created and you have established the linkage chain.

For more information on the linkage service, see “Linkage service” on page
71.

Retrieving rows Because many DataWindow services rely on the u_dw pfc_Retrieve event to
retrieve data, it’s best to code the PowerScript Retrieve function in the u_dw
pfc_Retrieve event. To retrieve rows, your code then calls the u_dw
of_Retrieve function, which calls either the pfc_Retrieve event or the
n_cst_dwsrv_linkage of_Retrieve function as appropriate.

v To retrieve rows for a DataWindow:

1 Call the of_Retrieve function (this example is from a DataWindow
Constructor event):

Long ll_return

ll_return = this.of_Retrieve()

2 Add code to the pfc_Retrieve event that calls the PowerScript Retrieve
function, returning the return code:

Return this.Retrieve()

Retrieving rows with the linkage service
When using the linkage service to retrieve detail DataWindow rows, code the
pfc_Retrieve function for the top-level DataWindow only. When using the
linkage service to filter or scroll detail DataWindow rows, code the
pfc_Retrieve event for all DataWindows in the linkage chain.

Using standard visual user objects

138 PowerBuilder

v To retrieve rows in a DropDownDataWindow:

1 Add code to the DataWindow control’s pfc_PopulateDDDW event. This
code should retrieve rows for the specified DropDownDataWindow:

IF as_colname = "dept_id" THEN
 adwc_obj.SetTransObject(SQLCA)
 Return adwc_obj.Retrieve()
ELSE
 Return 0
END IF

2 If the DataWindow control is using no other DataWindow services, enable
n_cst_dwsrv the base DataWindow service (this example is from the
DataWindow control’s Constructor event):

this.of_SetBase(TRUE)
this.of_SetTransObject(SQLCA)
this.of_Retrieve()

3 Call the n_cst_dwsrv of_PopulateDDDWs or of_PopulateDDDW
function to update all DropDownDataWindows or a specified
DropDownDataWindow:

dw_1.inv_base.of_PopulateDDDWs()
// Alternatively, you could call:
// dw_1.inv_base.of_PopulateDDDW("dept_id")

Controlling
DataWindow updates

Basic DataWindow updates PFC provides two ways to update
DataWindows:

• U_dw pfc_Update event Updates a single DataWindow without any
logical unit of work service processing, automatically calling the
n_cst_dwsrv_multitable of_Update function if the multitable update
service is enabled

• W_master pfc_Save event Uses the logical unit of work service to call
the u_dw of_Updatefunction for all DataWindows on the window. For
non-PFC DataWindow controls, the logical unit of work service calls the
PowerScript Update function

W_master is the ancestor of all PFC windows
Because w_master is the ancestor of all PFC windows, the pfc_Save event
is available to all windows in your application.

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 139

v To update a single DataWindow:

• Call the u_dw pfc_Update event:

IF dw_emplist.Event pfc_Update &
 (TRUE, TRUE) = 1 THEN
 SQLCA.of_Commit()
ELSE
 SQLCA.of_Rollback()
END IF

v To update all DataWindows on a window:

• Call the w_master pfc_Save event:

Integer li_return

li_return = w_emp.Event pfc_Save()
IF li_return < 0 THEN
 MessageBox("Update Failed", &
 "Update failed. Return code was " &
 + String(li_return))
ELSE
 gnv_app.of_GetFrame().SetMicroHelp &
 ("Update succeeded")
END IF

Automatic CloseQuery processing
If any of a window’s DataWindows has pending updates and the user closes the
window, PFC displays a Save Changes dialog box automatically. If the user
chooses to save changes, CloseQuery processing calls the window’s pfc_Save
event.

For more information on using pfc_Save, see “Using the pfc_Save process” on
page 195.

Declaring nonupdatable DataWindows You can declare a DataWindow as
nonupdatable, thus removing it from the pfc_Save update sequence and the
PFC default CloseQuery processing.

Shared DataWindows
If your window includes DataWindows that share data, only one DataWindow
control should be updatable. All others that share data should be nonupdatable.

Using standard visual user objects

140 PowerBuilder

v To declare a DataWindow as nonupdatable:

• Call the u_dw of_SetUpdatable function:

dw_emplist.of_SetUpdateable(FALSE)

Printing DataWindows PFC provides events that allow you to print DataWindows. You can:

• Display a Print dialog box, allowing you to choose options before printing

PFC uses the s_printdlgattrib structure to pass DataWindow properties to
the n_cst_platform of_PrintDlg function. You can use the pfc_PrePrintDlg
event to further customize the initial contents of the Print dialog box by
modifying elements in the s_printdlgattrib structure.

The elements in the s_printdlgattrib structure reflect selected DataWindow
Print properties (such as collate, page numbers, and number of copies).

• Print a DataWindow without displaying the Print dialog box

• Display a Page Setup dialog box that allows you to specify print settings

PFC uses the s_pagesetupattrib structure to pass DataWindow properties
to the n_cst_platform of_PageSetupDlg function. You can use the
pfc_PrePageSetupDlg event to further customize the initial contents of the
Page Setup dialog box by modifying elements in the s_pagesetupdlgattrib
structure.

The elements in the s_pagesetupattrib structure reflect selected
DataWindow Print properties (such as margins, paper size, and
orientation).

v To display the Print dialog box:

1 (Optional) Add code to the pfc_PrePrintDlg event to modify the
information used by the pfc_PrintDlg function (this example provides a
default for the number of copies specification):

astr_printdlg.l_copies = 1

2 Call the pfc_Print event:

dw_emp.Event pfc_Print()

v To print a DataWindow without displaying the Print dialog box:

• Call the pfc_PrintImmediate event:

dw_emp.Event pfc_PrintImmediate()

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 141

Comparing File>Print with the Print button
When you select File>Print from the menu bar, PFC calls the pfc_Print
event. When you click the Print toolbar button, PFC calls the
pfc_PrintImmediate event.

v To display the Page Setup dialog box:

1 (Optional) Add code to the pfc_PrePageSetupDlg event to modify the
information used by the pfc_PageSetupDlg function (this example
specifies the initial value for the orientation specification):

astr_pagesetup.b_portraitorientation = TRUE

2 Call the pfc_PageSetup event:

dw_emp.Event pfc_PageSetup()

Using the u_lvs ListView control

The u_lvs ListView control makes it easy for you to display and update
database data in a ListView. U_lvs includes services that you enable to obtain
the features you need:

• Base service Provides find functionality and other basic services

• Data source service Controls the display and update of database data in
a ListView. Also controls the bitmaps displayed with ListView data

• Sort service Provides column-header sort functionality (report view
only)

The u_lv ListView control
PFC also includes u_lv, a non-service-based ListView that includes many of
the same features as u_lvs. U_lv was the PFC ListView control in previous
releases and is not documented here.

Displaying database
data in a ListView

You use the ListView data source service to associate a ListView with a data
source (not to be confused with an ODBC data source). A data source can be:

• DataWindow object (using either data retrieved from the database or data
stored with the DataWindow object)

• SQL statement

• DataWindow control

• DataStore control

Using standard visual user objects

142 PowerBuilder

• Rows from an array

• A file

The ListView data source service (implemented through the
n_cst_lvsrv_datasource custom class user object) maintains the ListView’s
data source in a DataStore and uses it to populate the ListView. You can also
specify which columns from the DataWindow object should display when the
ListView is in Report view.

v To establish the initial ListView display:

1 Add a u_lvs user object to the window.

2 Enable the ListView data source service (this example also enables the
ListView sort service):

this.of_SetDataSource(TRUE)
this.of_SetSort(TRUE)

3 Call the n_cst_lvsrv_datasource of_Register function. This example
specifies the DataWindow object, Transaction object, and label column
(this example is from a ListView Constructor event):

this.inv_datasource.of_Register("emp_lname", &
"d_emplist", SQLCA)

The ListView data source service uses the DataWindow caching service to
maintain the data.

4 (Optional) Specify whether right mouse button support is enabled:

this.of_SetRMBMenu(TRUE)

5 (Optional) Specify additional columns to display in Report view (this
example displays all columns) and establish picture information:

this.inv_datasource.of_RegisterReportColumn()
this.inv_datasource.of_SetPictureColumn("1")

6 (Optional) Declare the ListView as eligible for update via the logical unit
of work service and the w_master pfc_Save process:

this.of_SetUpdateable(TRUE)

7 (Optional) Specify whether PFC asks the user to confirm deletions:

this.inv_datasource.of_SetConfirmOnDelete(TRUE)

8 Retrieve data from the database and add rows to the ListView:

this.Event pfc_Populate()

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 143

9 Extend the pfc_Retrieve event, adding code that calls the of_Retrieve
function, which allows you to specify retrieval arguments:

Any la_args[20]

Return this.of_Retrieve(la_args, ads_data)

Deleting items from
the ListView

You can delete items from the ListView, optionally deleting them from the data
source and the database.

v To remove items from the ListView, allowing them to remain in the u_lvs
DataStore and the database:

1 Enable the ListView’s Delete Items property.

2 Call the PowerScript DeleteItem function:

Integer li_index
li_index = lv_list.SelectedIndex()

lv_list.DeleteItem(li_index)

Redisplaying deleted rows
To redisplay all rows in the data source, call the of_Reset function followed by
the pfc_Populate event.

v To delete selected items from the ListView and the database:

1 Enable the ListView’s Delete Items property.

2 Call the pfc_Delete event:

lv_1.Event pfc_Delete()

3 Call the logical unit of work service of_Save function to update the
database (this example is from a user event defined for the ListView
control):

PowerObject lpo_obj[]
n_tr ltr_obj[]

IF NOT IsValid(inv_luw) THEN
 inv_luw = CREATE n_cst_luw
END IF
lpo_obj[1] = this
ltr_obj[1] = SQLCA

// Error processing omitted to save space
inv_luw.of_Save(lpo_obj, ltr_obj)

Using standard visual user objects

144 PowerBuilder

Inserting items into
the ListView

You can use a ListView to insert items into the database. But because the
ListView control allows updates to the label column only, you cannot add
information into all the columns displayed in Report view. To get around this,
you need another mechanism (such as a dialog box) to acquire enough
information to update the DataWindow, the ListView, and the database.

v To insert a row into the database using a ListView:

1 Create a mechanism (such as a dialog box) that collects information
needed to add a new row.

2 Use the information you gathered to call the of_InsertItem function. This
example assumes you added information to a temporary DataStore, which
is used as input to of_InsertItem:

lv_dept.of_InsertItem(ids_newrow, 1)

Using pictures ListViews allow you to specify up to three different pictures to display with an
item:

• Default picture An image that appears with a Listview item

• State picture An image that appears to the left of the original image

• Overlay picture An image (typically an icon or cursor) that appears on
top of a ListView item’s original image, indicating a difference between
the ListView item and other items

U_lvs allows you to set up the initial picture display using the following:

• Picture index Each index entry points to a bitmap file or PowerBuilder
system bitmap that the ListView uses for picture display. You define
entries in the picture index using the ListView’s property sheet. This
approach results in all ListView items displaying the same picture

• DataWindow column A column specifying row-specific display
information. The column can come directly from the database or can be a
DataWindow computed column. It can contain either of the following:

• A string specifying the name of a bitmap file that the ListView uses
when displaying the corresponding row

• An integer specifying the picture index the ListView uses when
displaying the corresponding row

Using a DataWindow column allows you to customize ListView item
display.

For more on ListViews, see Application Techniques.

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 145

v To use the picture index to specify ListView pictures:

1 Establish the picture index using the ListView’s property sheet.

2 Enable the ListView data source service:

this.of_SetDataSource(TRUE)

3 Specify the appropriate picture index entries by calling
n_cst_lvsrv_datasource functions, passing the picture index:

this.inv_datasource.of_SetPictureColumn('1')
this.inv_datasource.of_SetOverlayPictureColumn('1')
this.inv_datasource.of_SetStatePictureColumn('1')

v To use DataWindow columns to specify ListView pictures:

1 Establish database or DataWindow columns and populate them with
bitmap names (String or Character data type) or picture index
specifications (Integer data type).

2 Enable the ListView data source service:

this.of_SetDataSource(TRUE)

3 Specify the appropriate pictures by calling n_cst_lvsrv_datasource
functions, passing the DataWindow column names:

this.inv_datasource.of_SetPictureColumn &
 ('picture_name')
this.inv_datasource.of_SetOverlayPictureColumn &
 ('picture_overlay')
this.inv_datasource.of_SetStatePictureColumn &
 ('picture_state')

Bitmaps must exist
The files named in the retrieved rows must exist in a directory accessible
to the application.

Using standard visual user objects

146 PowerBuilder

Using the u_tvs TreeView control

The u_tvs TreeView control makes it easy for you to use DataWindows to
display and update hierarchical database data in a TreeView. U_tvs includes
services that you enable to obtain the features you need:

• Base service Provides basic services

• Level source service Controls the display and update of database data
in a TreeView level. Also controls the bitmaps displayed with TreeView
data

The u_tv TreeView control
PFC also includes u_tv, a non-service-based TreeView that includes many of
the same features as u_tvs. U_tv was the PFC TreeView control in previous
releases and is not documented here.

Basic use You use the TreeView level source service to associate each TreeView level
with a data source (not to be confused with an ODBC data source). A data
source can be:

• DataWindow object (using either data retrieved from the database or data
stored with the DataWindow object)

• SQL statement

• DataWindow control

• DataStore control

• Rows from an array

• A file

The TreeView level source service (implemented through the
n_cst_tvsrv_levelsource custom class user object) maintains each TreeView
level’s data source in a DataStore and uses it to populate the TreeView level.

Establishing the level’s data source You establish a level’s data source by
calling the n_cst_tvsrv_levelsource of_Register function. This function
includes an argument that specifies how a level relates to the levels above it.
This argument must be in the format :scope.level.column where:

• Scope specifies one of the following literals:

• Level

• Parent

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 147

• Level specifies an absolute or relative level number, depending on what
you specify for scope:

• Column specifies the DataWindow object column name from which to
obtain the values used in retrieval arguments.

For example, the following string specifies that the retrieval argument is from
the emp_name column of the item’s level-1 ancestor:

:level.1.emp_name

Multiple retrieval arguments
If a DataWindow object has multiple retrieval arguments, you specify the
scope.level.column argument multiple times within the same string. For
example, the following string specifies that the retrieval arguments are from the
region column two levels higher and the states_state_id column one level
higher:

":parent.2.region, :parent.1.states_state_id"

v To display a TreeView:

1 Add a u_tvs user object to the window.

2 Enable the level source service using the u_tvs of_SetLevelSource
function:

this.of_SetLevelSource(TRUE)

3 Define a data source for each TreeView level by calling the of_Register
function, once for each level:

this.inv_levelsource.of_Register(1, &
 "dept_name", "", "d_deptlist", SQLCA, "")

Scope
specification Level specification Example

Level The value you specify
indicates an absolute level
number

:level.1.emp_name indicates
that the retrieval argument is
from the emp_name column of
the item’s level-1 ancestor

Parent The value you specify
indicates a level relative
to the current level

:parent.2.emp_name
indicates that the retrieval
argument comes from the
emp_name column of the
ancestor two levels above

Using standard visual user objects

148 PowerBuilder

this.inv_levelsource.of_Register(2, "emp_lname", &
 ":parent.1.dept_id", "d_empbydept", SQLCA, "")

4 Call additional functions as necessary to control TreeView behavior:

this.inv_levelsource.of_SetPictureColumn(1, "1")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (1, "2")
this.inv_levelsource.of_SetPictureColumn(2, "4")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (2, "5")

5 (Optional) Specify whether right mouse button support is enabled:

this.of_SetRMBMenu(TRUE)

6 (Optional) Declare the TreeView as eligible for update via the logical unit
of work service and the w_master pfc_Save process:

7 Populate the TreeView by calling the u_tvs pfc_Populate event:

this.event pfc_Populate(0)

8 Extend the pfc_Retrieve event, adding code that calls the of_Retrieve
function, specifying retrieval arguments as returned by the
n_cst_tvsrv_levelsource of_GetArgs function:

Any la_args[20]
Integer li_level

IF IsValid(inv_levelsource) THEN
li_level = this.of_GetNextLevel(al_parent)
this.inv_levelsource.of_GetArgs(al_parent, &

 li_level, la_args)
END IF

Return this.of_Retrieve(al_parent, la_args, &
 ads_data)

Deleting items from a
TreeView

You can delete items from the TreeView, optionally deleting them from the
data source and the database.

v To remove items from the TreeView (allowing them to remain in the data
source and the database):

1 Enable the TreeView’s Delete Items property.

2 Call the PowerScript DeleteItem function:

Long ll_tvi

ll_tvi = this.FindItem(CurrentTreeItem!, 0)

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 149

Redisplaying deleted rows
To redisplay these rows, call the u_tvs pfc_RefreshLevel event.

v To delete items from the TreeView and the database:

1 Enable the TreeView’s Delete Items property.

2 Call the pfc_Delete event:

tv_1.Event pfc_Delete()

3 Call the logical unit of work service of_Save function to update the
database (this example is from a user event defined for the TreeView
control):

PowerObject lpo_obj[]
n_tr ltr_obj[]

IF NOT IsValid(inv_luw) THEN
 inv_luw = CREATE n_cst_luw
END IF
lpo_obj[1] = this
ltr_obj[1] = SQLCA

// Error processing omitted to save space
inv_luw.of_Save(lpo_obj, ltr_obj)

Inserting items into a
TreeView

You can use a TreeView to insert new items into the database. But because the
TreeView control displays a single field only, you typically need another
mechanism (such as a dialog box) to acquire enough information to update the
DataWindow, the TreeView, and the database.

v To insert a row into the database using a TreeView:

1 Create a mechanism (such as a dialog box) that collects information
needed to add a new row.

2 Use the information you gathered to call the of_InsertItem function. This
example assumes you added information to a temporary DataStore, which
is used as input to of_InsertItem:

Long ll_handle
TreeViewItem ltvi_item
Long ll_return

ll_handle = tv_1.FindItem(CurrentTreeItem! , 0)
ll_return = tv_1.of_InsertItem &
 (ll_handle, ids_data, 1, "Sorted", 0)

Using standard visual user objects

150 PowerBuilder

Using recursion to
populate a TreeView

The u_tvs TreeView control allows you to display multiple levels from a single
table that has a recursive relationship. In the employee table, for example, there
might be a recursive relationship between managers and employees, with each
employee row containing a column that points to its manager’s employee ID.

You indicate a recursive relationship through an argument to the
n_cst_tvsrv_levelsource of_Register function. A recursive level is always the
lowest level specified.

v To use recursion to populate a TreeView:

1 Create DataWindow objects to display high-level information as well as
the recursive data. In the table that follows, the d_empmanagerrecursive
DataWindow object handles all levels of manager below the department
head using recursive data:

2 Create a window that has a TreeView based on u_tvs.

3 Enable the level source service:

this.of_SetLevelSource(TRUE)

4 Call the of_Register function to establish the hierarchy and recursive
levels. Then call the pfc_Populate function to retrieve data (this example
is from the TreeView’s Constructor event):

this.inv_levelsource.of_Register(1, "dept_name", &
 "", "d_dept", SQLCA, "")
this.inv_levelsource.of_Register(2, &
 "dept_head_id", ":Level.1.dept_head_id", &
 "d_empdeptmanager", SQLCA, "")
this.inv_levelsource.of_Register(3, "emp_lname", &
 ":Parent.1.emp_id", "d_empmanagerrecursive", &
 SQLCA, "")

5 Call the n_cst_tvsrv_levelsource of_SetRecursive function for the bottom
level:

this.inv_levelsource.of_SetRecursive(3, TRUE)

6 Code other processing as necessary.

DataWindow object Contents Pseudo WHERE clause

d_dept Departments None

d_empdeptmanager Department heads employee.emp_id =
department.dept_head_id

d_empmanagerrecursive Managers and their
employees

employee.manager_id =
manager.emp_id

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 151

Using pictures A TreeView consists of items that are associated with one or more pictures,
which are used in different ways:

For more on how you specify pictures, see “Using pictures” on page 144.

v To use the picture index to specify TreeView pictures:

1 Using either the Window painter or the User Object painter, specify
default pictures for the TreeView. PFC uses this picture index for default,
selected, and overlay pictures.

2 Using either the Window painter or the User Object painter, specify state
pictures for the TreeView.

3 Enable the level source service:

this.of_SetLevelSource(TRUE)

4 Associate pictures with TreeView levels by calling
n_cst_tvsrv_levelsource functions:

this.inv_levelsource.of_SetPictureColumn(1, "1")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (1, "2")
this.inv_levelsource.of_SetPictureColumn(2, "4")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (2, "5")

v To use DataWindow columns to specify TreeView pictures:

1 Establish database or DataWindow columns and populate them with
bitmap names (String or Character data type) or picture index
specifications (Integer data type).

2 Enable the TreeView level source service:

this.of_SetLevelSource(TRUE)

3 Specify the appropriate pictures by calling n_cst_tvsrv_levelsource
functions, passing the DataWindow column names:

this.inv_levelsource.of_SetPictureColumn &
 (1, 'picture_name')

Picture Usage

Default Represents a TreeView item in its normal mode

Selected Represents a selected TreeView item

State Appears to the left of the TreeView item indicating that the item
is not in its normal mode, for example changed or unavailable

Overlay Appears on top of a TreeView item

Using standard visual user objects

152 PowerBuilder

this.inv_levelsource.of_SetSelectedPictureColumn &
 (1, 'picture_overlay')

Bitmaps must exist
The files named in the retrieved rows must exist in a directory accessible
to the application.

For more information on TreeView pictures, see the PowerBuilder User’s
Guide.

Coordinating a
TreeView and other
controls

One of the most popular uses for TreeViews is to perform coordinated
processing with a ListView. The Microsoft Explorer is an example of this type
of usage.

Another powerful possibility is to coordinate processing between a TreeView
and a DataWindow.

v To coordinate a TreeView and a ListView:

1 Create DataWindow objects to display information for all levels of the
TreeView (this example uses region, state, customer, and employee
information from the PFC example database).

2 Create a window that has a TreeView based on u_tvs and a ListView based
on u_lvs.

3 Define pictures for the TreeView and ListView.

4 Enable the TreeView level source service:

this.of_SetLevelSource(TRUE)

5 Register level source information for all TreeView levels (this example is
from the TreeView Constructor event):

this.inv_levelsource.of_Register(1, &
 "sales_regions_region", "", "d_region", &

SQLCA, "")
this.inv_levelsource.of_SetPictureColumn(1, "1")
this.inv_levelsource.of_SetSelectedPictureColumn &

(1, "7")

this.inv_levelsource.of_Register(2, &
 "states_state_name", &
 ":parent.1.sales_regions_region", &
 "d_regionstate", SQLCA, "")
this.inv_levelsource.of_SetPictureColumn(2, "2")
this.inv_levelsource.of_SetSelectedPictureColumn &

(2, "7")

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 153

this.inv_levelsource.of_Register(3, &
 "customer_company_name", &
 ":parent.2.sales_regions_region, &
 :parent.1.states_state_id", &
 "d_regionstatecust", SQLCA, "")
this.inv_levelsource.of_SetPictureColumn(3, "3")
this.inv_levelsource.of_SetSelectedPictureColumn &

(3, "7")

this.inv_levelsource.of_Register(4, &
 "employee_emp_lname", ":parent.1.customer_id", &
 "d_regionstatecustrep", SQLCA, "")
this.inv_levelsource.of_SetPictureColumn(4, "4")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (4, "7")

this.inv_levelsource.of_Register(5, &
 "order_id_string", ":parent.2.customer_id, &
 :parent.1.employee_emp_id", &
 "d_regionstatecustrepord", SQLCA, "")
this.inv_levelsource.of_SetPictureColumn(5, "5")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (5, "7")

6 Call the pfc_Populate event:

this.Event pfc_Populate(0)

7 Extend the pfc_Retrieve event:

Any la_args[20]
Integer li_level

IF IsValid(inv_levelsource) THEN
li_level = of_GetNextLevel(al_parent)
inv_levelsource.of_GetArgs(al_parent, &

li_level, la_args)
END IF
Return of_Retrieve(al_parent, la_args, ads_data)

8 Extend the TreeView’s SelectionChanged event to call the ListView’s
pfc_Populate event:

lv_1.Event pfc_Populate()

Using standard visual user objects

154 PowerBuilder

9 Enable ListView services and specify processing options (this example is
from the ListView Constructor event):

this.of_SetDataSource(TRUE)
this.of_SetSort(TRUE)
this.inv_sort.of_SetColumnHeader(TRUE)
this.of_SetRMBMenu(TRUE)

10 Override the ListView’s pfc_Populate event:

Integer li_RC, li_level
Long ll_handle
String ls_dataobject
String ls_labelcolumn, ls_picturecolumn
TreeViewItem ltvi_selecteditem
n_tr ltr_obj
n_cst_tvsrvattrib lnv_tvattrib

// Display current tree item children in the LV
ll_handle = tv_1.FindItem(CurrentTreeItem!, 0)
tv_1.GetItem(ll_handle, ltvi_selecteditem)

li_level = ltvi_selecteditem.Level + 1

// Normal registration
ls_dataobject = &
 tv_1.inv_levelsource.of_GetDataObject(li_level)
ls_labelcolumn = &
 tv_1.inv_levelsource.of_GetLabelColumn(li_level)
ls_picturecolumn = &
 tv_1.inv_levelsource.of_GetPictureColumn &
 (li_level)
tv_1.inv_levelsource.of_GetTransObject(li_level, &
 ltr_obj)

// Level 3 registration.
tv_1.inv_levelsource.of_GetLevelAttributes &
 (li_level, lnv_tvattrib)

// Set the ListView items
Choose Case ltvi_selecteditem.Level
Case 1
 li_RC = lv_1.inv_datasource.of_Register &
 (ls_labelcolumn, ls_dataobject, ltr_obj)
 li_RC = &
 lv_1.inv_datasource.of_SetPictureColumn &
 (ls_picturecolumn)

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 155

Case 2
 li_RC = lv_1.inv_datasource.of_Register &
 (ls_labelcolumn, ls_dataobject, ltr_obj)
 li_RC = &
 lv_1.inv_datasource.of_SetPictureColumn &
 (ls_picturecolumn)
Case 3
 li_RC = lv_1.inv_datasource.of_Register &
 (lnv_tvattrib.is_labelcolumn, &
 lnv_tvattrib.is_dataobject, &
 lnv_tvattrib.itr_obj)
 li_RC = &
 lv_1.inv_datasource.of_SetPictureColumn &
 (lnv_tvattrib.is_picturecolumn)
Case 4
 li_RC = lv_1.inv_datasource.of_Register &
 (ls_labelcolumn, ls_dataobject, ltr_obj)
 li_RC = &
 lv_1.inv_datasource.of_SetPictureColumn &
 (ls_picturecolumn)
Case 5 // Not in the tree so register normally
 li_RC = lv_1.inv_datasource.of_Register &
 ("product_description", &
 "d_regionstatecustreporditm", SQLCA)
 li_RC = &
 lv_1.inv_datasource.of_SetPictureColumn &
 ("product_picture_name")
End Choose
// Add all the visible columns of the datasource
// to the report view.
lv_1.inv_datasource.of_RegisterReportColumn()

Return Super::Event pfc_Populate()

11 Extend the ListView’s pfc_Retrieve event:

Long ll_handle
Any la_args[20]
TreeViewItem tvi_item

ll_handle = tv_1.FindItem(CurrentTreeItem!, 0)
tv_1.GetItem(ll_handle, ltvi_item)

If ltvi_item.Level < 5 Then
tv_1.inv_levelsource.of_GetArgs &

 (ll_handle, (ltvi_item.Level + 1), la_Args)

Using standard visual user objects

156 PowerBuilder

Else
la_Args[1] = Integer(ltvi_item.Label)

End If

Return of_Retrieve(la_args, ads_data)

12 Add code to the ListView’s DoubleClicked event to coordinate display
with the TreeView:

Integer li_level
Long ll_currenttvitem, ll_selectedtreehandle
String ls_lvlabel
ListViewItem llvi_selectedlvitem
TreeViewItem ltvi_newtreeitem
TreeViewItem ltvi_startingtreeitem

// Get the ListView item that was doubleclicked.
this.GetItem(index, llvi_selectedlvitem)
ls_lvlabel = llvi_selectedlvitem.label

// Determine which TreeView item is currently
// selected and get it.
ll_currenttvitem = tv_1.FindItem &
 (CurrentTreeItem!, 0)
tv_1.GetItem(ll_currenttvitem, &
 ltvi_startingtreeitem)

// Set a local variable to the level of the
// currently selected TreeView item.
li_level = ltvi_startingtreeitem.level

// Determine if the currently selected TreeView
// item has been expanded. If it hasn't, expand it.
// (expanding also populates). This loads the
// TreeView with the ListView information.
IF ltvi_startingtreeitem.expanded = FALSE THEN

tv_1.ExpandItem(ll_currenttvitem)
END IF

// Get the handle of the TreeView item that
// corresponds to the ListView item that was
// doubleclicked.
ll_selectedtreehandle = &
 tv_1.inv_base.of_FindItem ("label", ls_lvlabel, &
 ll_currenttvitem, (li_level + 1), TRUE, TRUE)

// Get the state information of the TreeView item

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 157

// that corresponds to the ListView item that was
// doubleclicked.
tv_1.GetItem(ll_selectedtreehandle, &
 ltvi_newtreeitem)

// Select and Expand the selected TreeView item.
IF ltvi_newtreeitem.expanded = FALSE THEN

tv_1.SelectItem(ll_selectedtreehandle)
tv_1.ExpandItem(ll_selectedtreehandle)

END IF

v To coordinate a TreeView and a DataWindow control:

1 Create DataWindow objects to display information for all levels of the
TreeView (this example uses region, state, customer, and employee
information from the PFC example database).

2 Create a window that has a TreeView based on u_tvs and a DataWindow
based on u_dw.

3 Define pictures for the TreeView.

4 Enable the TreeView level source service:

this.of_SetLevelSource(TRUE)

5 Register level source information for all TreeView levels (this example is
from the TreeView Constructor event):

this.inv_levelsource.of_Register(1, &
 "sales_regions_region", "", "d_region", &
 SQLCA, "")
this.inv_levelsource.of_SetPictureColumn(1, "1")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (1, "7")

this.inv_levelsource.of_Register(2, &
 "states_state_name", &
 ":parent.1.sales_regions_region", &
 "d_regionstate", SQLCA, "")
this.inv_levelsource.of_SetPictureColumn(2, "2")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (2, "7")

this.inv_levelsource.of_Register(3, &
 "customer_company_name", &
 ":parent.2.sales_regions_region, &
 :parent.1.states_state_id", &
 "d_regionstatecust", SQLCA, "")

Using standard visual user objects

158 PowerBuilder

this.inv_levelsource.of_SetPictureColumn(3, "3")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (3, "7")

this.inv_levelsource.of_Register(4, &
 "employee_emp_lname", ":parent.1.customer_id", &
 "d_regionstatecustrep", SQLCA, "")
this.inv_levelsource.of_SetPictureColumn(4, "4")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (4, "7")

this.inv_levelsource.of_Register(5, &
 "order_id_string", ":parent.2.customer_id, &
 :parent.1.employee_emp_id", &
 "d_regionstatecustrepord", SQLCA, "")
this.inv_levelsource.of_SetPictureColumn(5, "5")
this.inv_levelsource.of_SetSelectedPictureColumn &
 (5, "7")

6 Call the pfc_Populate event:

this.Event pfc_Populate(0)

7 Extend the pfc_Retrieve event:

Any la_args[20]
Integer li_level

IF IsValid(inv_levelsource) THEN
li_level = of_GetNextLevel(al_parent)
inv_levelsource.of_GetArgs(al_parent, &

li_level, la_args)
END IF
Return of_Retrieve(al_parent, la_args, ads_data)

8 Extend the TreeView’s SelectionChanging event to reset the DataWindow
control’s DataObject property and populate it with the selected TreeView
item:

n_ds lds_datastore
TreeViewItemltvi_new
Long ll_dsrow

// Get the DataStore and row for the new item
IF inv_levelsource.of_GetDataRow(newhandle, &

 lds_datastore, ll_dsrow) = -1 THEN
MessageBox("Error", &
"Error in of_GetDataRow", Exclamation!)

END IF

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 159

// Set dw_1 to use the new DataStore
dw_1.Reset()
dw_1.DataObject = lds_datastore.DataObject

// Copy the row for the selected item
// in the DataStore.
lds_datastore.RowsCopy(ll_dsrow, ll_dsrow, &
 Primary!, dw_1, 1, Primary!)

// Set status flag of new row to what
// it was in the TreeView level datasource.
// The new row is copied as NewModified!
CHOOSE CASE lds_datastore.GetItemStatus &
 (ll_dsrow, 0, Primary!)
CASE New!
 dw_1.SetItemStatus(1, 0, Primary!, NotModified!)
CASE DataModified!
 dw_1.SetItemStatus(1, 0, Primary!, DataModified!)
CASE NotModified!
 dw_1.SetItemStatus(1, 0, Primary!, DataModified!)
 dw_1.SetItemStatus(1, 0, Primary!, NotModified!)
END CHOOSE

Printing a TreeView U_tvs allows you to print TreeViews, optionally displaying a cancel dialog box
and customized level pictures.

v To print a TreeView:

1 Enable the TreeView print service:

tv_deptemp.of_SetPrint(TRUE)

2 Call the of_PrintTree function:

tv_deptemp.inv_print.of_PrintTree()

Using the u_rte RichTextEdit control

You use the PowerBuilder RichTextEdit control to enhance an application with
word processing capabilities. The PFC u_rte control makes it easier for you to
work with a RichTextEdit control. U_rte allows you to:

• Display new documents, optionally inserting them into the current
document

• Insert pictures into documents, optionally displaying a dialog box
prompting the user for the filename

Using standard visual user objects

160 PowerBuilder

• Print documents

• Add Find and Replace capabilities to a RichTextEdit control

• Control text properties

For complete information on the PowerBuilder RichTextEdit control, see the
PowerBuilder User’s Guide and Application Techniques.

Displaying rich text
documents

U_rte provides events that allow the user to specify the rich text document to
open:

• pfc_Open Replaces the current document with the selected document,
prompting the user before discarding the current document

• pfc_InsertFile Inserts the selected document into the current document.
The RichTextEdit control replaces the current selection when the file is
inserted

You can also populate the RichTextEdit control by calling the PowerScript
InsertDocument function.

v To display a document (replacing the current document):

• Call the pfc_Open event:

rte_doc.Event pfc_Open()

v To insert a document into the current document:

• Call the pfc_InsertFile function:

rte_doc.Event pfc_InsertFile()

The InsertDocument PowerScript function
You can also call the PowerScript InsertDocument function to display a
document. If you use this function to display a file in an empty control, you
must also call the of_SetFileName function to specify the name of the file
associated with the RichTextEdit control.

Inserting pictures U_rte provides an event that displays a dialog box for the user to choose a
bitmap to insert at the current cursor position. The RichTextEdit control
replaces the current selection when the bitmap is inserted.

v To display the Insert Picture dialog box:

• Call the pfc_InsertPicture event:

rte_doc.Event pfc_InsertPicture()

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 161

Tracking the picture’s filename
If you want to track the filename of the inserted picture, call the
of_InsertPicture function instead of the pfc_InsertPicture event.

Printing rich text
documents

U_rte provides events that allow you to print the data in RichTextEdit controls.
You can:

• Display a Print dialog box, allowing you to choose options before printing

PFC uses the s_printdlgattrib structure to pass properties to the
n_cst_platform of_PrintDlg function. You can use the pfc_PrePrintDlg
event to further customize the contents of the Print dialog box by
modifying elements in the s_printdlgattrib structure.

The values in the s_printdlgattrib structure reflect selected RichTextEdit
Print properties (such as collate, page numbers, and number of copies).

• Print a RichTextEdit control without displaying the Print dialog box

U_rte also provides functions that allow you to control the printing of page
numbers.

v To display the Print dialog box:

1 (Optional) Add code to the pfc_PrePrintDlg event to modify the
information used by the pfc_PrintDlg function (this example provides a
default for the number of copies specification):

astr_printdlg.l_copies = 1

2 Call the pfc_Print event:

rte_doc.Event pfc_Print()

v To print a RichTextEdit control without displaying the Print dialog box:

• Call the pfc_PrintImmediate event:

rte_doc.Event pfc_PrintImmediate()

v To control the printing of page numbers:

1 (Optional) Specify the page number upon which page numbers should first
appear. For example, many styles suppress the page number on the first
page of a document:

rte_doc.of_SetStartPageNumber(2)

Using standard visual user objects

162 PowerBuilder

2 Identify the name of the field into which PFC places the page number (this
example assumes an input field named PAGENUM):

rte_doc.of_SetPageInputField("PAGENUM")

v To print continuous pages when sharing data with a DataWindow or
DataStore:

1 Perform all the steps necessary for the RichText file to share data with the
DataWindow or DataStore:

ids_empdata = CREATE n_ds

ids_empdata.DataObject = "d_sharerte"
ids_empdata.of_SetTransObject(SQLCA)
IF ids_empdata.Retrieve() = -1 THEN
 MessageBox("Retrieve", "Retrieve error")
END IF

rte_doc.DataSource(ids_empdata)

2 Call the of_SetContinuousPages function:

rte_doc.of_SetContinuousPages(TRUE)

3 Print the document:

rte_doc.Event pfc_Print()

For more information on sharing data between a RichTextEdit control and
a DataWindow or DataStore, see Application Techniques.

Using the RTE find
service

U_rte features a find and replace service that you can use to enhance a
RichTextEdit control. Once the service is enabled, PFC displays Find and
Replace dialog boxes when the user selects Edit>Find or Edit>Replace from
the menu bar of a menu that descends from the PFC m_master menu and the
RichTextEdit control has focus.

You can also display Find and Replace dialog boxes programmatically.

v To display the Find dialog box:

1 Enable the Find service:

rte_doc.of_SetFind(TRUE)

2 Call the pfc_FindDlg event:

rte_doc.Event pfc_FindDlg()

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 163

v To display the Replace dialog box:

1 Enable the Find service:

rte_doc.of_SetFind(TRUE)

2 Call the pfc_ReplaceDlg event:

rte_doc.Event pfc_ReplaceDlg()

Controlling text
properties

U_rte allows you to access properties for selected text in a RichTextEdit
control. This feature allows you to change a single property at a time, leaving
the other properties as is. This differs from the PowerScript SetTextStyle
function, which requires that you specify all possible text properties.

v To set text properties:

1 (Optional) Establish a mechanism that allows the user to specify text
properties (the example ahead uses checkboxes).

2 Call the of_SetTextStylexxx functions to set text properties:

SetRedraw(FALSE)

rte_doc.of_SetTextStyleBold(cbx_bold.Checked)
rte_doc.of_SetTextStyleItalic(cbx_italic.Checked)
rte_doc.of_SetTextStyleUnderline &
 (cbx_underline.Checked)
rte_doc.of_SetTextStyleStrikeout &
 (cbx_strikeout.Checked)
rte_doc.of_SetTextStyleSubscript &
 (cbx_subscript.Checked)
rte_doc.of_SetTextStyleSuperscript &
 (cbx_superscript.Checked)

SetRedraw(TRUE)

v To access text properties:

1 (Optional) Establish a mechanism that displays text properties (the
example ahead uses checkboxes).

2 Call the of_GetTextStyle function:

n_cst_textstyleattrib lnv_style

rte_doc.of_GetTextStyle &
 (lnv_style)
cbx_bold.Checked = lnv_style.ib_bold
cbx_italic.Checked = lnv_style.ib_italic

Using standard visual user objects

164 PowerBuilder

cbx_underline.Checked = &
 lnv_style.ib_underlined
cbx_strikeout.Checked = lnv_style.ib_strikeout
cbx_subscript.Checked = lnv_style.ib_subscript
cbx_superscript.Checked = &
 lnv_style.ib_superscript

Using the u_oc OLE control

PFC provides functions and events that offer basic control over an OLE control
based on u_oc. In addition to standard support for editable controls (such as
cut, copy, paste, and right-mouse button support), u_oc includes Paste Special
functionality, support for in-place and off-site activation, and update links
functionality.

For complete information on programming with the OLE control, see
Application Techniques.

Displaying the Insert
Object dialog box

You display the Insert Object dialog box to change the object or the server
application.

v To display the Insert Object dialog box:

1 Create a window that has an OLE control based on u_oc.

2 Call the pfc_InsertObject event:

ole_1.Event pfc_InsertObject()

Activating an object in
place

When you activate an object in place, the user interacts with the object inside
the PowerBuilder application’s window.

1 Create a window that has an OLE control based on u_oc.

2 Call the pfc_EditObject event:

ole_1.Event pfc_EditObject()

Activating the object
offsite

When you activate an object offsite, the server application opens and the object
becomes an open document in the server’s window.

1 Create a window that has an OLE control based on u_oc.

2 Call the pfc_OpenObject event:

ole_1.Event pfc_OpenObject()

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 165

Updating the linked
object

When you update a linked object, PowerBuilder attempts to find a file linked
to an OLE container. If the linked file is not found, a dialog displays and lets
the user bring up a second dialog for finding the file or changing the link.

1 Create a window that has an OLE control based on u_oc.

2 Call the pfc_UpdateLinks event:

ole_1.Event pfc_UpdateLinks()

Using the u_tab Tab control and the u_tabpg user object

Many current applications use Tab controls and tab pages to enhance their user
interface. The u_tab Tab control and the u_tabpg user object provide basic PFC
functionality. And they both implement the resize service, which you enable
differently depending on how the tab is defined.

About Tab controls
and tab pages

Tab control A Tab control is a control that you place in a window or user
object that contains tab pages. Part of the area in the Tab control is for the tabs
associated with the tab pages. Any space left is occupied by the tab pages
themselves.

PFC provides the u_tab Tab control, which you can use as an ancestor for Tab
controls.

Tab page A tab page contains other controls and is one of several pages
within a Tab control. All tab pages in a Tab control occupy the same area of the
control, and only one is visible at a time. The active tab page covers the other
tab pages. There are different ways to approach tab page definition. You can
define:

• An embedded tab page In the Window or User Object painter, Select
Insert>TabPage from the Tab control’s pop-up menu and add controls to
those pages. An embedded tab page is of class UserObject but is not
reusable.

• A tab page user object In the User Object painter, create a custom
visual user object and add the controls that will display on the tab page. To
add a tab page user object to a Tab control, Select Insert>User Object from
the Tab control’s pop-up menu. A tab page defined as an independent user
object is reusable.

PFC provides the u_tabpg custom visual user object, which you can use as
the ancestor for tab pages.

You can mix and match the two methods—one Tab control can contain both
embedded tab pages and tab page user objects. But non-PFC tab pages do not
have support for PFC features, such as resizing and the message router.

Using standard visual user objects

166 PowerBuilder

For more information on programming with Tab controls and tab pages, see
Application Techniques.

Using u_tab When using u_tab, you always:

• Work with a descendant of u_tab

• Create the complete Tab control (including tab pages) in the User Object
painter

v To create a Tab control:

1 Create a user object based on u_tab.

2 Add embedded tab pages and tab page user objects. For embedded tab
pages, you add controls as necessary. Tab page user objects must be
completely defined; you cannot add or modify controls from within the
Tab control.

3 Create, override, and extend tab-page events and functions as necessary.

4 Create, override, and extend tab-level events and functions as necessary.
Then call events in the tab pages, optionally defining user events on the
Tab control that call the tab page events.

5 Add the user object to a window.

Using u_tabpg When using u_tabpg, you always work with a descendant of u_tabpg within the
User Object painter.

v To create a tab page:

1 Create a user object based on u_tabpg.

2 Add controls as necessary.

3 Add PowerScript code for the controls as necessary.

4 Create, override, and extend tab page events and functions as necessary.

5 Add the tab page user object to one of the following:

• U_tab-based user object

• Standard visual user object of type Tab

• Tab control within the Window painter

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 167

Using the resize
service with u_tab
descendants

You can use the resize service to add dynamic resize capabilities to tab pages.

How you enable the resize service differs depending on whether the Tab
control contains embedded tab pages or tab page user objects based on
u_tabpg. If a Tab control contains both embedded tab pages and tab page user
objects, you can combine the first two procedures that follow.

When using the Create on Demand option for tab page user objects, you must
also perform the third procedure to ensure that controls display properly.

v To enable the resize service for a Tab control when using embedded tab
pages:

1 Use the User Object painter to create a Tab control based on u_tab.

2 Define embedded tab pages.

3 Enable the resize service for the Tab control (this example is from the
Constructor event):

this.of_SetResize(TRUE)

4 Register controls within the tab pages:

this.inv_resize.of_Register &
 (this.tabpage_1.mle_1, &
 this.inv_resize.SCALETOBOTTOM)
this.inv_resize.of_Register &
 (this.tabpage_2.dw_1, &
 this.inv_resize.SCALETOBOTTOM)

5 Add the user object to a window.

6 Enable the resize service for the window and register affected controls
(this example is from the window’s Constructor event):

this.of_SetResize(TRUE)
this.inv_resize.of_Register(tab_1, "Scale")
this.inv_resize.of_Register &
 (cb_cancel, &
 this.inv_resize.FIXEDTOBOTTOM)
this.inv_resize.of_Register &
 (cb_ok, this.inv_resize.FIXEDTOBOTTOM)
this.inv_resize.of_SetMinSize &
 (this.width - 100, this.height - 100)

Using standard visual user objects

168 PowerBuilder

v To enable the resize service for a Tab control when using tab page user
objects based on u_tabpg:

1 Use the User Object painter to create a tab page based on u_tabpg.

2 Enable the resize service for the tab page (this example is from the
Constructor event):

this.of_SetResize(TRUE)

3 Register controls within the tab page:

this.inv_resize.of_Register &
 (this.dw_1, 0, 0, 100, 100))

4 Add the tab page user object to a Tab control.

If there are no embedded tab pages
If a Tab control contains only tab page user objects based on u_tabpg (but
not embedded tab pages), you need not enable the resize service for the
Tab control.

5 If the Tab control is a user object, add it to a window.

6 Enable the resize service for the window and register affected controls
(this example is from the Constructor event):

this.of_SetResize(TRUE)
this.inv_resize.of_Register &
 (tab_1, 0, 0, 100, 100)
this.inv_resize.of_Register &
 (cb_cancel, &
this.inv_resize.FIXEDTOBOTTOM)
this.inv_resize.of_Register &
 (cb_ok, &
this.inv_resize.FIXEDTOBOTTOM)
this.inv_resize.of_SetMinSize &
 (this.width - 100, this.height - 100)

v To use the resize service with tab page user objects that have the Create
on Demand property:

1 In the User Object painter, display the Position tab of the object’s property
sheet to determine what the size will be at creation time.

2 Specify the original size by calling the of_SetOrigSize function (this
example is from the tab page’s Constructor event):

this.inv_resize.of_SetOrigSize(1637, 457)

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 169

3 Register tab page controls:

this.inv_resize.of_Register &
 (this.dw_1, 0, 0, 100, 100))

4 Trigger the Resize event on the UserObject (this example is from the Tab
control’s Constructor event):

// The Resize event moves registered
// objects, as appropriate.
this.tabpage_1.TriggerEvent(Resize!)

Using custom visual user objects
PFC includes custom visual user objects that you can use to enhance
applications:

• A calculator: u_calculator

• A calendar: u_calendar

• A splitbar: u_st_splitbar

• A progress bar: u_progressbar

Using the calculator control
You use u_calculator (the PFC calculator control) to provide any of the
following:

• Drop-down calculator for numeric columns in a DataWindow:

Using custom visual user objects

170 PowerBuilder

• Drop-down calculator for numeric or decimal values in an EditMask:

• Standalone calculator for use with an EditMask:

Users make calculations using the drop-down calculator. To enter numbers
they either click the calculator’s buttons or use the numeric keypad with
NumLock turned on. The calculator automatically enters calculation results
into the associated field.

The PFC calculator control includes functions that allow you to control certain
aspects of calculator behavior. For example, you call the of_SetCloseOnClick
function to control whether the drop-down calculator closes when the user
clicks the equal sign.

Using a drop-down
calculator with a
DataWindow control

The PFC calculator control works with DataWindow columns that have a
numeric or decimal data type and are registered with u_calculator.

Depending on the registration option, the calculator displays when a registered
column gets focus, when the user clicks the drop-down arrow, or when your
code calls the pfc_DDCalculator event.

Controlling the visual cue To control the visual cue that displays in a
DataWindow column for which the drop-down calculator is enabled, you
supply an argument to the of_Register function:

Argument Result

NONE If the column uses the:

• DropDownListBox edit style, the calculator displays
automatically when the column gets the focus

• Edit or EditMask edit style, the calculator displays
when you call the pf_DDCalculator event

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 171

Column edit styles When the service converts columns to the
DropDownListBox edit style, properties that do not apply to
DropDownListBoxes are lost. Because of this, you typically use the drop-down
calculator with columns that already use the DropDownListBox edit style,
calling of_Register passing NONE.

v To use a drop-down calculator with DataWindow columns:

1 Find out which numeric or decimal DataWindow columns are appropriate
for use with a drop-down calculator. For example, a salary column might
use a calculator for use when determining raises. These columns must use
the DropDownListBox, Edit, or EditMask edit style.

2 Place a u_dw-based DataWindow control on the window or user object.

3 Enable the drop-down calculator by calling the u_dw
of_SetDropdownCalculator function (this example is from a DataWindow
Constructor event):

this.of_SetDropDownCalculator(TRUE)

4 Register columns one by one or all at once by calling the of_Register
function. Of_Register includes an optional argument specifying the
drop-down style:

this.iuo_calculator.of_Register("salary", &
 this.iuo_calculator.NONE)

5 Call additional functions as necessary to customize calculator behavior:

this.iuo_calculator.of_SetCloseOnClick(FALSE)
this.iuo_calculator.of_SetInitialValue(TRUE)

Displaying the
calculator
programmatically

You can also display the drop-down calculator programmatically. This works
with all of_Register options and is required for Edit and EditMask columns
when using the NONE option.

DDLB Of_Register converts all registered columns to the
DropDownListBox edit style. The calculator displays
when the user clicks the down arrow, which disappears
when the calculator displays

DDLB_WITHARROW Of_Register converts all registered columns to the
DropDownListBox edit style. The calculator displays
when the user clicks the down arrow, which remains
when the calculator displays

Argument Result

Using custom visual user objects

172 PowerBuilder

v To display the drop-down calculator programmatically:

1 Place a u_dw-based DataWindow control on the window or user object.

2 Enable the drop-down calculator by calling the u_dw
of_SetDropdownCalculator function (this example is from a DataWindow
Constructor event):

this.of_SetDropDownCalculator(TRUE)

3 Register columns to be displayed programmatically by calling the
of_Register function. Of_Register includes an argument specifying the
drop-down style. Programmatic display works best with the NONE style
but can be used with any drop-down style:

this.iuo_calculator.of_Register("salary", &
 this.iuo_calculator.NONE)

4 Define a user event or visual control (such as a command button) that sets
focus in the DataWindow control and calls the u_dw pfc_DDCalculator
event:

IF dw_1.SetColumn("salary") = 1 THEN
 dw_1.Event pfc_DDCalculator()
END IF

Using a drop-down
calculator with an
EditMask control

You can use a drop-down calculator with EditMask controls that use the
numeric or decimal option type.

v To use a drop-down calculator with an EditMask control:

1 Place a u_em-based EditMask control on the window or user object.

2 Enable the drop-down calculator by calling the u_em
of_SetDropdownCalculator function (this example is from an EditMask
Constructor event):

this.of_SetDropDownCalculator(TRUE)

3 Call additional functions as necessary to customize calculator behavior:

this.iuo_calculator.of_SetCloseOnClick(FALSE)
this.iuo_calculator.of_SetInitialValue(TRUE)

4 Define a user event or visual control (such as a picture button) that displays
the drop-down calculator by calling the u_em pfc_DDCalculator event:

em_1.Event pfc_DDCalculator()

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 173

Using a standalone
calculator

You can create a standalone calculator by placing u_calculator directly on a
window or user object.

v To create a standalone calculator:

1 Place a u_em-based EditMask control on the window or user object.

2 Place an instance of u_calculator on the window or user object.

3 Associate the drop-down calculator with the EditMask by calling the
u_calculator of_SetRequestor function (this example is from a
u_calculator instance’s Constructor event):

this.of_SetRequestor(parent.em_1)

Setting calculator
options

The PFC calculator control provides options that you can set to control
calculator behavior:

• Close on click Controls whether the drop-down calculator closes when
the user clicks the equal sign:

this.of_SetDropDownCalculator(TRUE)
...
this.iuo_calculator.of_SetCloseOnClick(TRUE)

• Initial value Controls whether the calculator initializes blank fields with
a zero when it first displays:

this.of_SetDropDownCalculator(TRUE)
...
this.iuo_calculator.of_SetInitialValue(TRUE)

Use the Constructor event
You typically call the functions that control these behaviors in the u_dw or
u_em Constructor event.

The examples in this discussion are from the Constructor event of a u_dw-
based DataWindow control.

Using custom visual user objects

174 PowerBuilder

Using the calendar control
You use u_calendar (the PFC calendar control) to provide a drop-down
calendar for date values in any of the following:

• U_dw-based DataWindow control:

• U_em-based EditMask control:

Users enter dates by clicking on the drop-down calendar, automatically
entering the selected date in the associated field. They change months by
clicking the >> and << buttons and can also navigate the calendar with
keyboard arrow keys.

By default, all days appear with the same characteristics. You can specify a
different color for Saturdays and Sundays as well as whether Saturdays and
Sundays should appear bold. The calendar also allows you to highlight
holidays and other marked days.

The PFC calendar control includes functions that allow you to control certain
aspects of calendar behavior. For example, you call the of_SetInitialValue
function to control whether the drop-down calendar initializes blank fields with
the current date when it first displays.

Using a drop-down
calendar with a
DataWindow control

The drop-down calendar works with DataWindow columns that have a date
data type and are registered with u_calendar.

Depending on the registration option, the calendar displays when a registered
column gets focus, when the user clicks the drop-down arrow, or when your
code calls the pfc_DDCalendar event.

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 175

Controlling the visual cue To control the visual cue that displays in a
DataWindow column for which the drop-down calendar is enabled, you supply
an argument to the of_Register function:

Column edit styles When the service converts columns to the
DropDownListBox edit style, properties that do not apply to
DropDownListBoxes are lost. So you typically use the drop-down calendar
with columns that already use the DropDownListBox edit style, calling
of_Register passing NONE.

v To use a drop-down calendar with DataWindow columns:

1 Find which date DataWindow columns are appropriate for use with a
drop-down calendar. For example, a requested delivery date column might
use a drop-down calendar. These columns must use the
DropDownListBox, Edit, or EditMask edit style.

2 Place a u_dw-based DataWindow control on the window or user object.

3 Enable the drop-down calendar by calling the u_dw
of_SetDropdownCalendar function (this example is from a DataWindow
Constructor event):

this.of_SetDropDownCalendar(TRUE)

4 Register columns one by one or all at once by calling the of_Register
function. Of_Register includes an optional argument specifying the
drop-down style:

this.iuo_calendar.of_Register("salary" &
 this.iuo_calendar.NONE)

Argument Result

NONE If the column uses the:

• DropDownListBox edit style, the calendar displays
automatically when the column gets the focus

• Edit or EditMask edit style, the calendar displays
when you call the pf_DDCalendar event

DDLB Of_Register converts all registered columns to the
DropDownListBox edit style. The calendar displays
when the user clicks the down arrow, which disappears
when the calendar displays

DDLB_WITHARROW Of_Register converts all registered columns to the
DropDownListBox edit style. The calendar displays
when the user clicks the down arrow, which remains
when the calendar displays

Using custom visual user objects

176 PowerBuilder

5 (Optional) Establish the font style and color for weekend days:

this.iuo_calendar.of_SetSaturdayBold(TRUE)
this.iuo_calendar.of_SetSaturdayColor &
 (RGB(0, 255, 0))
this.iuo_calendar.of_SetSundayBold(TRUE)
this.iuo_calendar.of_SetSundayColor &
 (RGB(0, 255, 0))

6 (Optional) Establish a list of holidays with their font style and color (this
example shows holidays for one year only):

Date ld_holidays[11]

ld_holidays[1] = 1997-01-01
ld_holidays[2] = 1997-02-17
ld_holidays[3] = 1997-04-21
ld_holidays[4] = 1997-05-26
ld_holidays[5] = 1997-07-04
ld_holidays[6] = 1997-09-01
ld_holidays[7] = 1997-10-13
ld_holidays[8] = 1997-11-27
ld_holidays[9] = 1997-11-28
ld_holidays[10] = 1997-12-25
ld_holidays[11] = 1997-12-26
...
this.iuo_calendar.of_SetHoliday(ld_holidays)
this.iuo_calendar.of_SetHolidayBold(TRUE)
this.iuo_calendar.of_SetHolidayColor &
 (RGB(0, 255, 0))

7 (Optional) Establish a list of marked days with their font style and color:

Date ld_holidays[11], ld_marked_days[12]

ld_marked_days[1] = 1996-06-13
ld_marked_days[2] = 1996-03-16
ld_marked_days[3] = 1996-09-23
ld_marked_days[4] = 1996-09-14
ld_marked_days[5] = 1997-06-13
ld_marked_days[6] = 1997-03-16
ld_marked_days[7] = 1997-09-23
ld_marked_days[8] = 1997-09-14
ld_marked_days[9] = 1998-06-13
ld_marked_days[10] = 1998-03-16
ld_marked_days[11] = 1998-09-23
ld_marked_days[12] = 1998-09-14
...

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 177

this.iuo_calendar.of_SetMarkedDay(ld_marked_days)
this.iuo_calendar.of_SetMarkedDayBold(TRUE)
this.iuo_calendar.of_SetMarkedDayColor &
 (RGB(255, 0, 0))

Ensuring consistency
To ensure that all users see the same calendar display, define display
characteristics, holidays, and marked days in the u_calendar (extension-
level object) Constructor event.

8 (Optional) Call additional functions as necessary to customize calendar
behavior:

this.iuo_calendar.of_SetAlwaysRedraw(TRUE)
this.iuo_calendar.of_SetInitialValue(TRUE)

Displaying the
calendar
programmatically

You can also display the drop-down calendar programmatically. This works
with all of_SetRegister options and is required for Edit and EditMask columns
when using the NONE option.

v To display the drop-down calendar programmatically:

1 Place a u_dw-based DataWindow control on the window or user object.

2 Enable the drop-down calendar by calling the u_dw
of_SetDropdownCalendar function (this example is from a DataWindow
Constructor event):

this.of_SetDropDownCalendar(TRUE)

3 Register columns to be displayed programmatically by calling the
of_Register function. Of_Register includes an argument specifying the
drop-down style. Programmatic display works best with the NONE style
but can be used with any drop-down style:

this.iuo_calendar.of_Register("start_date" &
 this.iuo_calendar.NONE)

4 Define a user event or visual control (such as a command button) that sets
focus in the DataWindow control and calls the u_dw pfc_DDCalendar
event:

IF dw_1.SetColumn("start_date") = 1 THEN
 dw_1.Event pfc_DDCalendar()
END IF

Using a drop-down
calendar with an
EditMask control

You can use a drop-down calculator with EditMask controls that use the date
option type.

Using custom visual user objects

178 PowerBuilder

v To use a drop-down calendar with an EditMask control:

1 Place a u_em-based EditMask control on the window or user object.

2 Enable the drop-down calendar by calling the u_em
of_SetDropdownCalendar function (this example is from an EditMask
Constructor event):

this.of_SetDropDownCalendar(TRUE)

3 (Optional) Establish the font style and color for weekend days:

this.iuo_calendar.of_SetSaturdayBold(TRUE)
this.iuo_calendar.of_SetSaturdayColor &
 (RGB(0, 255, 0))
this.iuo_calendar.of_SetSundayBold(TRUE)
this.iuo_calendar.of_SetSundayColor &
 (RGB(0, 255, 0))

4 (Optional) Establish a list of holidays with their font style and color (this
example shows holidays for one year only):

Date ld_holidays[11]

ld_holidays[1] = 1997-01-01
ld_holidays[2] = 1997-02-17
ld_holidays[3] = 1997-04-21
ld_holidays[4] = 1997-05-26
ld_holidays[5] = 1997-07-04
ld_holidays[6] = 1997-09-01
ld_holidays[7] = 1997-10-13
ld_holidays[8] = 1997-11-27
ld_holidays[9] = 1997-11-28
ld_holidays[10] = 1997-12-25
ld_holidays[11] = 1997-12-26
...
this.iuo_calendar.of_SetHoliday(ld_holidays)
this.iuo_calendar.of_SetHolidayBold(TRUE)
this.iuo_calendar.of_SetHolidayColor &
 (RGB(0, 255, 0))

5 (Optional) Establish a list of marked days with their font style and color:

Date ld_holidays[11], ld_marked_days[12]

ld_marked_days[1] = 1996-06-13
ld_marked_days[2] = 1996-03-16
ld_marked_days[3] = 1996-09-23
ld_marked_days[4] = 1996-09-14
ld_marked_days[5] = 1997-06-13

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 179

ld_marked_days[6] = 1997-03-16
ld_marked_days[7] = 1997-09-23
ld_marked_days[8] = 1997-09-14
ld_marked_days[9] = 1998-06-13
ld_marked_days[10] = 1998-03-16
ld_marked_days[11] = 1998-09-23
ld_marked_days[12] = 1998-09-14
...
this.iuo_calendar.of_SetMarkedDay(ld_marked_days)
this.iuo_calendar.of_SetMarkedDayBold(TRUE)
this.iuo_calendar.of_SetMarkedDayColor &
(RGB(255, 0, 0))

6 (Optional) Call additional functions as necessary to customize calendar
behavior:

this.iuo_calendar.of_SetAlwaysRedraw(TRUE)
this.iuo_calendar.of_SetInitialValue(TRUE)

7 Define a user event or visual control (such as a picture button) that displays
the drop-down calendar by calling the u_em pfc_DDCalendar event:

em_1.Event pfc_DDCalendar()

Establishing weekend
display options

The PFC calendar control allows you to specify distinct colors and/or bold for
Saturdays and Sundays.

v To establish weekend display options:

1 Specify whether Saturdays appear in bold by calling the
of_SetSaturdayBold function:

this.iuo_calendar.of_SetSaturdayBold(TRUE)

2 Specify a color for Saturdays by calling the of_SetSaturdayColor function:

this.iuo_calendar.of_SetSaturdayColor &
 (RGB(0, 255, 0))

3 Specify whether Sundays appear in bold by calling the of_SetSundayBold
function:

this.iuo_calendar.of_SetSundayBold(TRUE)

4 Specify a color for Sundays by calling the of_SetSundayColor function:

this.iuo_calendar.of_SetSundayColor &
 (RGB(0, 255, 0))

Using custom visual user objects

180 PowerBuilder

Establishing holidays
and marked days

The PFC calendar control allows you to establish a set of holidays and a set of
marked days.

You can specify distinct colors and/or bold for holidays and marked days.

Specify dates for more than one year
Users can navigate through multiple years in the PFC calendar control. You
should specify holidays and marked days to handle as many years as needed.

v To establish holidays and marked days:

1 Establish arrays containing the lists of holidays and marked days:

Date ld_holidays[11], ld_marked_days[12]

ld_holidays[1] = 1997-01-01
ld_holidays[2] = 1997-02-17
ld_holidays[3] = 1997-04-21
ld_holidays[4] = 1997-05-26
ld_holidays[5] = 1997-07-04
ld_holidays[6] = 1997-09-01
ld_holidays[7] = 1997-10-13
ld_holidays[8] = 1997-11-27
ld_holidays[9] = 1997-11-28
ld_holidays[10] = 1997-12-25
ld_holidays[11] = 1997-12-26

ld_marked_days[1] = 1996-06-13
ld_marked_days[2] = 1996-03-16
ld_marked_days[3] = 1996-09-23
ld_marked_days[4] = 1996-09-14
ld_marked_days[5] = 1997-06-13
ld_marked_days[6] = 1997-03-16
ld_marked_days[7] = 1997-09-23
ld_marked_days[8] = 1997-09-14
ld_marked_days[9] = 1998-06-13
ld_marked_days[10] = 1998-03-16
ld_marked_days[11] = 1998-09-23
ld_marked_days[12] = 1998-09-14

2 After enabling the calendar for the DataWindow or EditMask control,
establish the list of holidays by calling the of_SetHoliday function:

this.iuo_calendar.of_SetHoliday(ld_holidays)

3 Establish holiday display options as necessary:

this.iuo_calendar.of_SetHolidayBold(TRUE)

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 181

this.iuo_calendar.of_SetHolidayColor &
 (RGB(0, 255, 0))

4 Establish the list of marked days by calling the of_SetMarkedDay
function:

this.iuo_calendar.of_SetMarkedDay(ld_marked_days)

5 Establish marked day options as necessary:

this.iuo_calendar.of_SetMarkedDayBold(TRUE)
this.iuo_calendar.of_SetMarkedDayColor &
 (RGB(255, 0, 0))

Setting calendar
options

The PFC calendar control provides options that you can set to control calendar
behavior:

• Close on click Controls whether the drop-down calendar closes when
the user clicks a date:

this.of_SetDropDownCalendar(TRUE)
...
this.iuo_calendar.of_SetCloseOnDClick(TRUE)

• Close on double-click Controls whether the drop-down calendar closes
when the user double-clicks a date:

this.of_SetDropDownCalendar(TRUE)
...
this.iuo_calendar.of_SetCloseOnDClick(TRUE)

• Date format Controls the format of the date returned by the calendar:

this.of_SetDropDownCalendar(TRUE)
...
this.iuo_calendar.of_SetDateFormat("mm/dd/yy")

This must match the control’s date format
The of_SetDateFormat specification must match the DataWindow
column’s edit format or the EditMask’s date mask.

• Initialize date Controls whether the calendar initializes blank fields with
the current date when the calendar displays:

this.of_SetDropDownCalendar(TRUE)
...
this.iuo_calendar.of_SetInitialValue(TRUE)

Using custom visual user objects

182 PowerBuilder

Use the Constructor event
You typically call the functions that control these behaviors in the u_dw or
u_em Constructor event.

Using the splitbar control
You use u_st_splitbar (the PFC splitbar control) to display a splitbar in
windows and visual user objects. The splitbar separates two or more visual
controls. By dragging the splitbar users can resize the surrounding controls
dynamically.

Using the splitbar to
separate controls

The splitbar control allows you to give windows a customizable interface, one
of the fundamentals of good interface design. By dynamically resizing visual
controls, users can easily control the information displayed. Typical uses for
splitbars include:

• Between a TreeView and a ListView

• Between a TreeView and a DataWindow

• Between master and detail DataWindows

v To use the splitbar control:

1 Place an instance of u_st_splitbar on a window between two or more
controls.

2 Move and resize the splitbar object and the surrounding objects until they
relate appropriately. For example, a vertical splitbar between two objects
should have the same height as the surrounding objects.

Setting the exact dimensions
Control the exact size and placement with the splitbar object’s property
sheet.

3 Add code to the u_st_splitbar instance’s Constructor event to establish the
line style and register the controls that resize when the user moves the
splitbar:

this.of_Register(tv_1, LEFT
this.of_Register(lv_1, RIGHT)
this.of_SetBarColor(RGB(192, 192, 192))

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 183

Setting splitbar
options

The PFC splitbar control provides options that you can set to control splitbar
display. You can control:

• Bar color To specify bar color, call the of_SetBarColor function:

this.of_SetBarColor(RGB(192,192,192))

• The bar color that displays when the bar is moved To specify bar
move color, call the of_SetBarMoveColor function:

this.of_SetBarMoveColor(RGB(128, 128, 128))

• Horizontal pointer To specify the name of the pointer that displays
when the cursor is over a horizontal splitbar, call the
of_SetHorizontalPointer function:

this.of_SetHorizontalPointer("SizeNS!")

• Vertical pointer To specify the name of the pointer that displays when
the cursor is over a vertical splitbar, call the of_SetVerticalPointer
function:

this.of_SetVerticalPointer("SizeNS!")

• Minimum object size To specify the minimum size for objects resized
by the splitbar, call the of_SetMinObjectSize function:

this.of_SetMinObjectSize(100)

You set these options in the u_st_splitbar instance’s Constructor event.

Using the progress bar control
You use u_progressbar (the PFC progress bar control) to provide users with a
visual representation of percentage complete for long-running operations. The
PFC progress bar can be vertical or horizontal and can display either percent
complete or programmatically specified text.

You can display the progress bar control to show percent complete for any
repetitive process. Typical uses for a progress bar include:

• Application setup

• Data retrieval

• File copy operations

PFC provides similar progress-bar capabilities on an MDI frame with
MicroHelp as part of n_cst_winsrv_statusbar (the window status-bar service).

Using custom visual user objects

184 PowerBuilder

Other PFC progress bar controls
PFC also provides horizontal (u_hpb) and vertical (u_vpb) progress bars that
are based on the standard PowerBuilder progress bar controls. The
u_progressbar control has functionality that is not available with the standard
controls.

How PFC calculates
percent complete

You call the of_SetMaximum function to specify the value that must be
reached to equal 100%—for example, the number of rows to be retrieved from
the database. Then your code updates the current progress by calling the
of_Increment function regularly—for example, once for every ten rows.
Percent complete is equal to (current progress / maximum) * 100—for
example, (number of rows retrieved / maximum number of rows) * 100.

Showing progress for retrieval
To show progress for row retrieval, code an embedded SQL statement
(SELECT MAX) to determine the number of rows to be retrieved. Then
increment progress in the DataWindow’s RetrieveRow event. (Repeated
execution of the RetrieveRow event causes poor performance; but some users
prefer visual feedback to optimized performance.)

Using the progress
bar in a window

You can either place the progress object directly onto a window or create a
pop-up window that displays the progress bar, perhaps including a Cancel
button.

v To use the progress bar in a window or user object:

1 Place an instance of u_progressbar on the window or user object,
optionally making it hidden.

2 Add code to the progressbar control to establish default behavior (this
example uses the control’s Constructor event):

this.of_SetFillStyle(LEFTRIGHT)
this.of_SetDisplayStyle(PCTCOMPLETE)
this.of_SetFillColor(RGB(128, 128, 128))

3 Establish the value that must be reached to equal 100%, such as the
number of rows displayed in a DataWindow or the number of bytes in the
file to be copied (this example sets the maximum as the number of
elements in the array containing DataWindow objects to be printed):

DataStore lds_data
Long ll_return
Integer li_count, li_max

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 185

String ls_dataobject[] = &
 {"d_empall", "d_empbydept", "d_dept"}

lds_data = CREATE DataStore
li_max = UpperBound(ls_dataobject)
uo_progress.of_SetMaximum(li_max)

4 Before entering the process to be tracked, initialize the progress bar by
calling the of_SetPosition function passing zero:

uo_progress.of_SetPosition(0)

5 At various points in your process (or at regular points in repetitive logic),
call the of_Increment function to update the progress bar:

FOR li_count = 1 TO li_max
 lds_data.DataObject = ls_dataobject[li_count]
 lds_data.SetTransObject(SQLCA)
 ll_return = lds_data.Retrieve()
 IF ll_return <> -1 THEN
 uo_progress.of_Increment(1)
 lds_data.Print()
 END IF
NEXT
DESTROY lds_data

Using the progress
bar in the status bar

N_cst_winsrv_statusbar (the PFC status bar object) includes much of the
functionality provided by u_progressbar. This allows you to display progress
in the status bar instead of using space in the window or opening a separate
progress window.

Status bar service functions that apply to the progress bar are equivalent to
progress bar control functions except that the function names include the word
bar. For example, of_SetBarAutoReset is equivalent to of_SetAutoReset.

v To use the progress bar in the status bar:

1 Ensure that the status bar service is enabled for the frame.

2 Enable the progress bar by calling the n_cst_winsrv_statusbar of_SetBar
function:

this.inv_statusbar.of_SetBar(TRUE)

3 Add code to establish default behavior for the progress bar:

this.inv_statusbar.of_SetBarDisplayStyle &
 (this.inv_statusbar.PCTCOMPLETE)

Using custom visual user objects

186 PowerBuilder

4 Establish the value that must be reached to equal 100%, such as the
number of rows displayed in a DataWindow or the number of bytes in the
file to be copied. This example sets the maximum as the number of
elements in the array containing DataWindow objects to be printed:

DataStore lds_data
Long ll_return
Integer li_count, li_max
String ls_dataobject[] = &
 {"d_empall", "d_empbydept", "d_dept"}

lds_data = CREATE DataStore
li_max = UpperBound(ls_dataobject)
this.inv_statusbar.of_SetBarMaximum(li_max)

5 Before entering the process to be tracked, initialize the progress bar by
calling the of_SetBarPosition function, passing zero:

w_frame lw_frame

lw_frame = gnv_app.of_GetFrame()
lw_frame.inv_statusbar.of_SetBarPosition(0)

6 At various points in your process (or at regular points in repetitive logic),
call the of_BarIncrement function to update the progress bar:

FOR li_count = 1 TO li_max
 lds_data.DataObject = ls_dataobject[li_count]
 lds_data.SetTransObject(SQLCA)
 ll_return = lds_data.Retrieve()
 IF ll_return <> -1 THEN
 lw_frame.inv_statusbar.of_BarIncrement(1)
 lds_data.Print()
 END IF
NEXT

Progress bar options The PFC progress bar control provides options that you can set to control
progress bar behavior. With the exception of of_Maximum and of_Minimum,
you typically call these functions in the Constructor event of the u_progressbar
instance (u_progressbar) or the pfc_PreOpen event of the Frame window
(n_cst_winsrv_statusbar).

Progress bar options include:

• Maximum and minimum values Control the values that determine 0%
and 100%. You call different functions, depending on whether the progress
bar is in a window or in the status bar:

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 187

• U_progressbar Call the of_SetMaximum and of_SetMinimum
functions:

SELECT COUNT(emp_id)
 INTO :il_max
 FROM Employee
 USING SQLCA;
IF il_max > 0 THEN
 uo_progress.of_SetMaximum(il_max)
 uo_progress.of_SetMinimum(0)
END IF

• N_cst_winsrv_statusbar Call the of_SetBarMaximum and
of_SetBarMinimum functions:

w_frame lw_frame

lw_frame = gnv_app.of_GetFrame()
SELECT COUNT(emp_id)
 INTO :il_max
 FROM Employee
 USING SQLCA;
IF il_max > 0 THEN
 lw_frame.inv_statusbar.of_SetBarMaximum &
 (il_max)
 lw_frame.inv_statusbar.of_SetBarMinimum(0)
END IF

• Display style Controls the text that displays in the progress bar:

• No text (bar only)

• Percent complete

• Current increment value

• User-specified text

You call different functions depending on whether the progress bar is in a
window or in the status bar:

• U_progressbar Call the of_SetDisplayStyle function, passing
either an integer or a u_progressbar constant to specify the
information displayed on the progress bar:

this.of_SetDisplayStyle(PCTCOMPLETE)

Using custom visual user objects

188 PowerBuilder

• N_cst_winsrv_statusbar Call the of_SetBarDisplayStyle function,
passing either an integer or an n_cst_winsrv_statusbar constant to
specify the information displayed on the progress bar:

this.inv_statusbar.of_SetBarDisplayStyle &
 (this.inv_statusbar.PCTCOMPLETE)

• Fill style Controls whether the progress bar fills from left to right, right
to left, bottom to top, or top to bottom. You call different functions
depending on whether the progress bar is in a window or in the status bar:

• U_progressbar Call the of_SetFillStyle function, passing either an
integer or a u_progressbar constant to specify the progress bar fill
style:

this.of_SetFillStyle(LEFTRIGHT)

• N_cst_winsrv_statusbar Call the of_SetBarFillStyle function,
passing either an integer or an n_cst_winsrv_statusbar constant to
specify the progress bar fill style:

this.inv_statusbar.of_SetBarFillStyle &
 (this.inv_statusbar.LEFTRIGHT)

• Fill color Controls the color displayed as the progress bar fills. You call
different functions depending on whether the progress bar is in a window
or in the status bar:

• U_progressbar Call the of_SetColor function, passing the color
used to fill the bar:

this.of_SetFillColor(RGB(128, 128, 128))

• N_cst_winsrv_statusbar Call the of_SetBarColor function,
passing the color used to fill the bar:

this.inv_statusbar.of_SetBarFillColor &
 (RGB(255, 0, 0))

• Background color Controls the color displayed before the progress bar
fills:

• Call the of_SetBackColor function, passing the background color:

this.of_SetBackColor(RGB(128, 128, 128))

Not used in the status bar
This option is not available when using a progress bar with the status bar
service.

CHAPTER 5 Using PFC Visual Controls

PFC Library User’s Guide 189

• Text color Controls the color of text displayed in the progress bar. You
call different functions depending on whether the progress bar is in a
window or in the status bar:

• U_progressbar Call the of_SetTextColor function, passing the
color used for text:

this.of_SetTextColor(RGB(255, 0, 0))

• N_cst_winsrv_statusbar Call the of_SetBarTextColor function,
passing the color used for text:

this.inv_statusbar.of_SetBarTextColor &
 (RGB(255, 0, 0))

• Autoreset Controls whether a completed progress bar remains filled
when it reaches 100%. You call different functions depending on whether
the progress bar is in a window or in the status bar:

• U_progressbar Call the of_SetAutoReset function:

this.of_SetAutoReset(TRUE)

• n_cst_winsrv_statusbar Call the of_SetBarAutoClear function:

this.inv_statusbar.of_SetBarAutoReset(TRUE)

• Default step value Controls the default increment value. This is the
value used when you call of_Increment (or of_BarIncrement) with no
arguments. The initial default step value is 10. You call different functions
depending on whether the progress bar is in a window or in the status bar:

• U_progressbar Call the of_SetStep function, specifying the
increment value to be used when calling of_Increment with no
arguments:

this.of_SetStep(5)

• N_cst_winsrv_statusbar Call the of_SetBarStep function,
specifying the increment value to be used when calling
of_BarIncrement with no arguments:

this.inv_statusbar.of_SetBarStep(5)

• Font options Controls the font and other display characteristics for the
progress bar text. You can call one or more of the following functions:

this.of_SetFontBold(TRUE)
this.of_SetFontFace("Monotype Corsiva")
this.of_SetFontFamily(Script!)
this.of_SetFontCharSet(1)
this.of_SetFontItalic(TRUE)

Using custom visual user objects

190 PowerBuilder

this.of_SetFontSize(10)
this.of_SetFontPitch(Variable!)
this.of_SetFontUnderline(TRUE)

Not used in the status bar
Font options are not available when using a progress bar with the status bar
service.

v To specify user-defined text displayed in the progress bar:

1 Call the of_SetMessageText function, specifying the text strings to display
at regular intervals in the progress bar:

...
String ls_msgtext[] = {"Ten", "Twenty", &
 "Thirty", "Forty", "Fifty", "Sixty", &
 "Seventy", "Eighty", "Ninety", &
 "One Hundred"}
this.of_SetMessageText(ls_msgtext)

2 Call the of_SetDisplayStyle function, passing either a 3 or the MSGTEXT
constant:

this.of_SetDisplayStyle(MSGTEXT)

The progress bar displays the text strings at regular intervals as the bar
fills.

Not used in the status bar
This option is not available when using a progress bar with the status bar
service.

PFC Library User’s Guide 191

C H A P T E R 6 Using PFC Windows and Menus

About this chapter This chapter explains how to use PFC windows and menus.

Contents

Using PFC windows
PFC provides a base class ancestor window (w_master) as well as
ancestor windows for each of the standard window types.

Each of these windows descends from w_master:

PFC windows contain instance variables, events, and functions that
provide advanced functionality and enable communication with other
PFC objects.

Topic Page

Using PFC windows 191

Using menus with PFC 201

Using PFC windows

192 PowerBuilder

Window usage basics
When developing an application, you typically:

• Create base-class and descendent windows

• Enable window services

• Open windows from menu items

Developing with PFC
windows

As you begin an application, you review the required functionality to decide
which instance variables, events, and functions belong in ancestor windows.
The way you define application-specific ancestor behavior differs depending
on your extension strategy.

For a discussion of extension strategy, see “Choosing an extension strategy”
on page 20.

Enabling window
services

PFC provides a variety of window services that you can use to add production-
strength features to an application. Many of these services require little or no
coding on your part. The window services are:

• Base window service

• Preference service

• Status bar service (frame windows only)

• Sheet management service (frame windows only)

• Resize service (also applies to tabs, tab pages, and custom visual user
objects)

v To use window services:

1 Determine which window services are appropriate for the window.

2 Enable the appropriate window services using the of_Setservicename
functions (this example from the window’s pfc_PreOpen event enables the
preference and resize services):

this.of_SetPreference(TRUE)
this.of_SetResize(TRUE)

3 Call other functions as necessary to initialize services (this example
enables the preference service for menu items and toolbars and enables the
resize service for a DataWindow and two CommandButtons):

this.inv_preference.of_SetMenuItems(TRUE)
this.inv_preference.of_SetToolbars(TRUE)
this.inv_resize.of_Register &
 (dw_emplist, 0, 0, 100, 100)

CHAPTER 6 Using PFC Windows and Menus

PFC Library User’s Guide 193

this.inv_resize.of_Register &
 (cb_ok, 0, 100, 0, 0)
this.inv_resize.of_Register &
 (cb_cancel, 0, 100, 0, 0)

For specific usage information on individual window services, see “Window
services” on page 89.

Opening PFC
windows

In many applications, users open windows by selecting menu items. You can
use the PFC message router to help implement this process in a flexible and
consistent manner.

See “The message router” on page 41.

v To open PFC windows from a menu item:

1 In the menu item, populate Message.StringParm with the window name
and call the menu service of_SendMessage function:

n_cst_menu lnv_menu

Message.StringParm = "w_emplist"
lnv_menu.of_SendMessage(this, "pfc_Open")

2 In the frame window’s pfc_Open event, add code to access the message
object and open the requested window:

String ls_window
w_sheet lw_sheet

ls_window = Message.StringParm
OpenSheet(lw_sheet, ls_window, this, 4, Original!)

Other options
There are other ways to open PFC windows. These include opening windows
directly from the menu item, extending the message object to contain passed
arguments, and defining additional frame window user events for opening
windows.

Using PFC windows

194 PowerBuilder

Using response windows
You typically use w_response (the PFC response window) to create a response
window that displays and collects data, settings, or preferences.

Another use for w_response
You can also use w_response to create a response window used in place of a
MessageBox. But in that case it’s usually best to use the w_message dialog box
(part of the error message service).

W_response includes three user events to which you add code that processes
the user action:

v To use w_response events:

1 Create a window that descends from w_response.

2 Add controls to handle display and user input.

Use the PFC standard visual user objects
You can use PowerBuilder window controls with PFC. But it’s best to use
controls that descend from PFC standard visual user objects (u_dw, u_lb,
u_sle, u_cb, and so on).

3 Add code to support these controls. For example, add code to the
window’s pfc_PreOpen event to access values in an INI file for display in
SingleLineEdit controls.

Event Use it to More information

pfc_Apply Process the window
contents, leaving the
window open

Many current applications contain
an Apply CommandButton that
performs this functionality

pfc_Cancel Ignore the window
contents and close the
window

You call this event from the
CommandButton to which you
assign the Cancel property

pfc_Default Process the window
contents and close the
window

You call this event from the
CommandButton to which you
assign the Default property

CHAPTER 6 Using PFC Windows and Menus

PFC Library User’s Guide 195

4 Code the pfc_Apply, pfc_Cancel, and pfc_Default events as necessary. For
example, a pfc_Default event might save the window contents in an INI
file and close the window:

String ls_temp

ls_temp = trim(sle_base.Text)
SetProfileString("eisapp.ini", &
 "Files", "base", ls_temp)
ls_temp = trim(sle_x1.Text)
SetProfileString("eisapp.ini", &
 "Files", "extra1", ls_temp)
ls_temp = trim(sle_x2.Text)
SetProfileString("eisapp.ini", &
 "Files", "extra2", ls_temp)
Close(this)

5 Add CommandButtons to trigger the corresponding event. For example,
an OK CommandButton should call the pfc_Default event:

parent.Event pfc_Default()

Using pfc_Apply
To maximize reusability, place processing in pfc_Apply and call
pfc_Apply from pfc_Default.

Using the pfc_Save process
The w_master pfc_Save event automatically validates and saves changes for
all PFC and non-PFC DataWindows on a window. Because pfc_Save calls
many other events, offloading most of the work to the logical unit of work
service, you should think of it as a process rather than a single event.

The logical unit of work service
The pfc_Save process uses the logical unit of work service, which you enable
by calling the of_SetLogicalUnitOfWork function. If you do not enable the
logical unit of work service, w_master enables it automatically as needed.

Using PFC windows

196 PowerBuilder

Although there are many ways to save data, it’s best to use the pfc_Save event
to save changes. In addition to simply calling the w_master pfc_Save event and
checking the return value, you can have complete control over update
processing by customizing and extending events called by the pfc_Save
process. You can:

• Save changes for other self-updating objects (including the n_ds
DataStore, the u_tvs TreeView, and the u_lvs Listview)

• Save changes for other controls

• Control which objects are updated and the order in which they are updated

• Save changes for objects on other windows

Self-updating objects
PFC integrates update functionality into certain objects called self-updating
objects. When you call the w_master pfc_Save event, it automatically updates
all self-updating objects on the window. All DataWindows are self-updating.
You must explicitly enable self-updating functionality for n_ds, u_lvs, u_tab,
and u_tvs. And you can add self-updating functionality to any visual or
nonvisual control.

For more on self-updating objects, see “Logical unit of work service” on page
111.

CHAPTER 6 Using PFC Windows and Menus

PFC Library User’s Guide 197

The pfc_Save process This is the w_master pfc_Save process:

Pfc_Save events These are the events in the pfc_Save process:

Event Purpose Comment

pfc_AcceptText Performs an AcceptText
function for all self-
updating objects on the
window

Called by the w_master
of_AcceptText function

pfc_UpdatesPending Determines which self-
updating object have
pending updates

Called by the w_master
of_UpdatesPending function

Using PFC windows

198 PowerBuilder

pfc_Validation Performs validation on all
self-updating objects with
pending updates

Called by the of_Validation
function

For non-PFC DataWindows,
code a ue_validation user event
that returns an integer or long
greater than or equal to 0 to
indicate success

pfc_UpdatePrep Empty user event to which
you add optional update
preparation logic

Extend this event if the
window itself functions as a
self-updating object

pfc_PreUpdate Empty event in which you
can code additional
validation

Return 1 for success; return
anything else to terminate the
pfc_Save process

pfc_BeginTran Empty event in which you
code logic to begin the
database transaction, if
required by your DBMS

Return 1 for success; return
anything else to terminate the
pfc_Save process

pfc_Update Performs database
updates for all modified
self-updating object

You can extend this event to
update controls that are not
self-updating. Return 1 for
success; return -1 for failure. If
you return -1, also create an
error message by calling the
of_SetDBErrorMsg function.
The pfc_DBError event will
display this message

pfc_EndTran Empty event to which you
code logic to commit or
roll back the database
transaction

Commit or roll back changes
based on the passed argument

Although you can code
COMMIT and ROLLBACK
statements in other places, it’s
best to code them here

Event Purpose Comment

CHAPTER 6 Using PFC Windows and Menus

PFC Library User’s Guide 199

Pfc_Save return
values

Pfc_Save returns values as follows:

Adding code to extend
pfc_Save events

You can customize and extend the pfc_Save process. For example, you can:

• Add code to the pfc_EndTran event to commit and roll back transactions

• Create and code a ue_Validation user event in non-PFC DataWindows to
perform validation

• Extend the pfc_Save process to include other types of window controls

pfc_DBError If any update failed, this
event displays a message

If the Error service is enabled,
this event calls the of_Message
function; if not, it calls the
PowerScript MessageBox
function

PFC delays displaying the
error message (as opposed to
displaying it in pfc_Update) so
that you can roll back changes
in the pfc_EndTran event
before displaying an error
message dialog box

pfc_PostUpdate Resets the update flags for
all updated objects, as
follows

If you extended the pfc_Save
process to update other
controls, extend this event to
reset the update flags

Event Purpose Comment

Return
value Meaning Comment

1 Success

0 No pending updates

-1 AcceptText error pfc_Save process halted

-2 Error in pfc_UpdatesPending pfc_Save process halted

-3 Validation error pfc_Save process halted

-4 Error in pfc_PreUpdate pfc_Save process halted

-5 Error in pfc_BeginTran pfc_Save process halted

-6 Error in pfc_Update pfc_EndTran and pfc_DBError events
completed; pfc_PostUpdate was not
performed

-7 Error in pfc_EndTran pfc_PostUpdate was not performed

-8 Error in pfc_PostUpdate

-9 Error in pfc_UpdatePrep pfc_Save process halted

Using PFC windows

200 PowerBuilder

v To add code to the pfc_EndTran event:

• Add code to the pfc_EndTran event that checks the ai_update_results
argument and commits or rolls back changes as appropriate for each
transaction object that might be updated:

Integer li_return

IF ai_update_results = 1 THEN
 li_return = SQLCA.of_Commit()
ELSE
 li_return = SQLCA.of_Rollback()
END IF

IF li_return = 0 THEN
 Return 1
ELSE
 Return -1
END IF

Enabling self-updating
objects

By default, DataWindows are the only self-updating objects that are updatable.
All others (n_ds, u_lvs, u_tvs, u_tab, and any user-defined custom visual user
objects) are nonupdatable and must be specifically enabled.

v To enable self-updating objects:

1 Call the self-updating object’s of_SetUpdatable function:

ids_data.of_SetUpdateable(TRUE)
lv_1.of_SetUpdateable(TRUE)
tv_1.of_SetUpdateable)(TRUE)

2 (DataStores only) Add the n_ds-based DataStore to the list of controls to
be updated:

PowerObject lpo_objs[]
Integer li_count

// this = window
lpo_objs = this.control
li_count = UpperBound(lpo_objs)
lpo_objs[li_count + 1] = ids_data
this.of_SetUpdateObjects(lpo_objs)

CHAPTER 6 Using PFC Windows and Menus

PFC Library User’s Guide 201

Enabling a one-time
update

PFC allows you to identify a specified group of controls and update them.

v To perform a one-time update:

1 Identify the controls to be updated:

PowerObject lpo_objs[]
Integer li_return

lpo_objs[1] = lv_1
lpo_objs[2] = dw_1
lv_1.of_SetUpdateable(TRUE)

2 Perform the one-time save by calling the pfc_SaveObjects event:

// this = window
li_return = this.Event pfc_SaveObjects(lpo_objs)
// Check for return codes 1 to -8
...

Using menus with PFC
PFC implements menu services through functions, menu items, and events
coded in m_master. M_master contains:

• A function that calls the message router

• Menu items that use the message router to perform the requested
functionality

Inherit from menus in the extension level
When using menus, always inherit from menus with the m_ prefix (don’t
inherit from menus with the pfc_ prefix). Pfc_ prefixed objects are subject to
change when you upgrade PFC versions.

Using menus with PFC

202 PowerBuilder

Two menu inheritance strategies
You can use PFC’s menus or write your own.

Using PFC menus Your application can use PFC menus as the basis for its menus. In most cases,
you use m_master as the ancestor for your application’s sheet windows and use
m_frame as the frame menu. You add all application-specific menu bar items
and menu items to m_master. Let sheet menus inherit from m_master, and
enable and disable menu items as appropriate. Disable menu bar items and
menu items as appropriate in m_frame.

Creating your own
menus

Alternatively, you can implement your own customized menus, separate from
m_master. If you do, consider using the menu service of_SendMessage menu
function to implement PFC message router functionality.

Extending PFC menus
If you use PFC menus, you will need to modify them or their descendants to
provide application-specific processing. When you add new menu bar items
and menu items, PFC uses the PowerBuilder Shift Over/Down attribute to
control where menu items are placed:

For complete information on the Shift Over/Down feature, see the
PowerBuilder User’s Guide.

Creating your own menus
PFC menus provide menu items to cover most events in PFC controls. Your
application may have more specific requirements that justify creating a menu
from scratch for use with your PFC windows.

On this menu PowerBuilder inserts new items

Menu bar Between Tools and Window

File menu Above Delete

Edit menu Above Update Links

View menu Above Ruler

Tools menu Above Customize Toolbars

Window menu Below Undo

Help menu Above About

CHAPTER 6 Using PFC Windows and Menus

PFC Library User’s Guide 203

Creating menus Use the Menu painter to create your menus. Add just the items required for
your application, defining shortcut keys, accelerators, and toolbar bitmaps as
needed.

Creating an extension level
If you are an object administrator creating menus for use by multiple
developers and applications, consider creating an ancestor menu (with
PowerScript and PFC code) and an empty extension level menu for use by
developers.

Communicating with
windows

Depending on your needs, you can use either your own menu-window
communication method or the PFC message router. When using the message
router, it’s best to use the menu service of_SendMessage function to call events
on the window. Each menu item calls of_SendMessage, passing the name of
the event to call. For example, the Clicked event for the Edit>Cut menu item
calls of_SendMessage as follows:

n_cst_menu lnv_menu

lnv_menu.of_SendMessage(this, "pfc_Cut")

There are two menu items that require special attention:

• File>Exit Call the application manager pfc_Exit event:

gnv_app.Event pfc_Exit()

• MRU menu items (File menu) Copy the menu item text to
Message.StringParm before calling of_SendMessage:

n_cst_menu lnv_menu

Message.StringParm = this.Text
lnv_menu.of_SendMessage(this, "pfc_MRUClicked")

Copy and paste
You can save time by copying and pasting menu item scripts from
pfc_m_master.

Enabling items on the
Window menu

When the window sheet manager service is enabled, PFC menus automatically
enable and disable Window menu items as appropriate. If you are using the
sheet manager service and want that functionality in your menus, copy the code
from the pfc_m_master Window menu item Selected event.

Using menus with PFC

204 PowerBuilder

Using standard menu items
M_master contains menu items that invoke user events on the corresponding
window. Use menu items as follows:

• If the menu item does not apply to a window Make it invisible.

• If the menu item applies to a window Review PowerScript code in the
corresponding user event for the associated window, DataWindow, or
visual control.

Each of the m_master menu items triggers certain events. Some of these user
events are empty; you must add the appropriate PowerScript code to perform
application-specific processing.

For more information on PFC user events, see the PFC Object Reference.

File menu

Edit menu

Menu item Event triggered Object(s) containing user event

New pfc_New w_master

Open pfc_Open u_rte, w_master

Close pfc_Close w_master

Save pfc_Save u_rte, w_master

Save As pfc_SaveAs u_rte, w_master

Print pfc_Print u_dw, u_rte, w_master

Print Preview pfc_PrintPreview u_dw, u_rte

Page Setup pfc_PageSetup u_dw, w_master

Print Immediate pfc_PrintImmediate u_dw, u_rte, w_master

Delete Empty menu item Add your own events or functions

Properties Empty menu item Add your own events or functions

Exit pfc_exit N_cst_appmanager

Menu item Event triggered Object(s) containing user event

Undo pfc_Undo U_dw, u_em, u_mle, u_rte, and u_sle

Cut pfc_Cut U_ddlb, u_ddplb, u_dw, u_em,
u_mle, u_oc, u_rte, and u_sle

Copy pfc_Copy U_ddlb, u_ddplb, u_dw, u_em,
u_mle, u_oc, u_rte, and u_sle

Paste pfc_Paste U_ddlb, u_ddplb, u_dw, u_em,
u_mle, u_oc, u_rte, and u_sle

Paste Special pfc_PasteSpecial U_oc

Clear pfc_Clear U_ddlb, u_ddplb, u_dw, u_em,
u_mle, u_oc, u_rte, and u_sle

CHAPTER 6 Using PFC Windows and Menus

PFC Library User’s Guide 205

View menu

Insert menu

Select All pfc_SelectAll U_ddlb, u_ddplb, u_dw, u_em,
u_mle, u_rte, and u_sle

Find pfc_FindDlg U_dw and u_rte

Replace pfc_ReplaceDlg U_dw and u_rte

Update Links pfc_UpdateLinks U_oc

Object>Edit pfc_EditObject U_oc

Object>Open pfc_OpenObject U_oc

Menu item Event triggered Object(s) containing user event

Menu item Action Object containing user event

Ruler pfc_Ruler U_dw and u_rte

Large Icons Empty menu item. Add logic to u_lvs to switch to large
icon view

Small Icons Empty menu item Add logic to u_lvs to switch to small
icon view; call from this menu item

List Empty menu item Add logic to u_lvs to switch to list
view; call from this menu item

Details Empty menu item Add logic to u_lvs to switch to detail
view; call from this menu item

Arrange
Icons>By

Empty menu item Add logic to u_lvs to arrange icons by
some common property; call from
this menu item

Arrange
Icons>Auto
Arrange

Empty menu item Add logic to u_lvs to arrange icons;
call from this menu item

First pfc_FirstPage U_dw and u_rte

Next pfc_NextPage U_dw and u_rte

Prior pfc_PreviousPage U_dw and u_rte

Last pfc_LastPage U_dw and u_rte

Sort pfc_SortDlg U_dw

Filter pfc_FilterDlg U_dw

Zoom pfc_Zoom U_dw

Menu item Event triggered Object(s) containing user event

File pfc_InsertFile U_rte

Picture pfc_InsertPicture U_rte

Object pfc_InsertObject U_oc

Using menus with PFC

206 PowerBuilder

Tools menu

Window menu

Help menu

Using pop-up menus
PFC also provides pop-up menus for use by your applications and PFC
services. The pop-up menu provided depends on the control that you right-
click. You can disable the pop-up menu functionality by setting the
ib_rmbmenu instance variable to FALSE in a control’s Constructor event. You
can also extend the pop-up menus to add application-specific functionality.

For a list of the pop-up menus provided for standard controls, see “Using right-
mouse button support” on page 131.

Menu item Event triggered Object(s) containing user event

Customize
Toolbars

pfc_Toolbars W_frame

Menu item Action Object containing user event

Cascade pfc_Cascade W_frame

Tile Horizontal pfc_TileHorizontal W_frame

Tile Vertical pfc_TileVertical W_frame

Layer pfc_Layer W_frame

Minimize All
Windows

pfc_MinimizeAll W_frame

Undo pfc_UndoArrange W_frame

Menu item Event triggered Object(s) containing user event

Help Topics pfc_Help W_master

About of_About N_cst_appmanager

PFC Library User’s Guide 207

C H A P T E R 7 PFC Utilities

About this chapter This chapter describes the PFC utilities and how to use them.

Contents

DataWindow Properties window
The DataWindow Properties window allows you to:

• Selectively enable and disable DataWindow services

• View the PFC syntax for the selected service

• Access and modify DataWindow properties interactively, including:

DataWindow buffers
Row and column status
Statistics
Properties of all objects on the DataWindow object

The DataWindow Properties service is invoked in Lesson 4, “Build the
First Sheet Window” of the PFC tutorial.

Topic Page

DataWindow Properties window 207

SQL Spy 210

Security 213

Library Extender 225

Migration Assistant 226

DataWindow Properties window

208 PowerBuilder

DataWindow
Properties window tab

The DataWindow Properties window has three tabs:

• Services Displays a list of DataWindow services. Select a service and
click Enable or Disable as needed. Click Properties to display information
for the currently selected service:

• Buffers Click the right mouse button to display a pop-up menu that
allows you to manipulate rows:

CHAPTER 7 PFC Utilities

PFC Library User’s Guide 209

• Status flags Change DataWindow status flags as necessary. The Assist
Status Change check box allows you to perform two-step status changes
in one step:

Service dialog box
tabs

Each service displays its own set of tabs that display its properties. This
example shows the tabs for the sort service:

• General Displays information about the selected service:

SQL Spy

210 PowerBuilder

• Syntax Displays the PFC syntax used for the selected service:

Usage Use the DataWindow Properties window to debug and test your application
and its use of DataWindow services.

v To display the DataWindow properties window:

1 Enable the DataWindow Properties service by calling the u_dw
of_SetProperty function:

this.of_SetProperty(TRUE)

2 When the DataWindow displays, right-click and select DataWindow
Properties.

The DataWindow Properties window displays.

SQL Spy
The SQL Spy utility traps and saves SQL automatically for DataWindows and
EXEC IMMEDIATE SQL statements. You can also use SQL Spy to display
and optionally modify DataWindow SQL statements, and to log native SQL.

Modifying SQL
If you are using an ODBC data source, you must set DisableBind to 1 in the
connect string.

CHAPTER 7 PFC Utilities

PFC Library User’s Guide 211

SQL Spy logs SQL to a file, which you can optionally display in a pop-up
window.

Usage To use SQL Spy, you call functions to enable the utility, to specify the log file,
and to control display of the w_sqlspy window. You can also call a function to
log native SQL.

You typically initialize SQL Spy from the application manager pfc_Open
event, although you can call SQL Spy functions from anywhere within an
application.

v To enable SQL Spy:

1 Enable the debugging service by calling the n_cst_appmanager
of_SetDebug function:

this.of_SetDebug(TRUE)

2 Enable SQL Spy by calling the n_cst_debug of_SetSQLSpy function:

this.inv_debug.of_SetSQLSpy(TRUE)

3 (Optional) Specify a log file by calling the n_cst_sqlspy of_SetLogFile
function:

this.inv_debug.inv_sqlspy.of_SetLogFile &
("c:\MyPFCApps\ThisApp\appdbug.log")

v To display the w_sqlspy pop-up window:

• Call the n_cst_sqlspy of_OpenSQLSpy function:

gnv_app.inv_debug.inv_sqlspy.of_OpenSQLSpy(TRUE)

SQL Spy

212 PowerBuilder

The w_sqlspy pop-up window displays the most recent entries in the log
file:

The w_sqlspyinspect dialog box allows you view and optionally modify SQL
before the DataWindow submits it to the database.

v To display the w_sqlspyinspect dialog box:

• Call the n_cst_sqlspy of_SetBatchMode(FALSE) function:

gnv_app.inv_debug.inv_sqlspy.of_SetBatchMode &
(FALSE)

v To use the w_sqlspyinspect dialog box:

1 Update the database, inserting, deleting, or modifying rows.

The w_sqlinspect dialog box displays:

2 Review the SQL statement, optionally modifying values.

CHAPTER 7 PFC Utilities

PFC Library User’s Guide 213

3 Click the appropriate command button:

• Step Updates the current row and displays information for the next
row to be updated

• Resume Updates the current row and updates all remaining rows;
disable the SQL Spy inspect capability

• Cancel Does not update the current row and displays the next row
to be updated

• Cancel All Does not update all remaining rows

v To log a SQL statement manually:

• Code the n_cst_sqlspy of_SQLSyntax function, passing the SQL to be
logged:

String ls_sql

ls_sql = "SELECT * FROM employee;"
gnv_app.inv_debug.inv_sqlspy.of_SQLSyntax &

("Native SQL", String(Now()) + ": " + &
String(Today()) + ": " + ls_sql)

...

Security
PFC provides a database-driven security system that requires minimal coding
in your applications. It allows you to populate a security database with
information, including:

• Window controls

• DataWindow columns

• User objects

• Menu items

You then create a matrix of users and groups, controlling access to these items.

At execution time, PFC selectively enables, disables, or hides secured items, as
specified in the security database.

Security

214 PowerBuilder

The PFC security system includes:

• The security administration utility Allows you to define users, groups,
items to be secured, and user access.

• The security scanner Scans user-specified objects to gather
information on all items that can be secured.

• The security database Contains information on users, groups, items to
be secured, and user access to those secured items.

Delivered as a local database
PFC provides a local database to hold security information. However, when
you implement security, you will want to use a server database.

Security by exception The PFC security capability provides security by exception. By default, the
security system uses the object’s current settings. This means that PFC
modifies settings only where specified explicitly in the security database.

The process The security administration utility is a PowerBuilder application you run in
order to:

• Define users and groups

• Run the security scanner

• Define security for objects and controls

• Associate users and groups with objects and controls

In your applications, you add code to implement security:

For more information on enabling security in your applications, see
“Implementing security in an application” on page 223.

In this object Add this code

Application manager Call the n_cst_appmanager of_SetSecurity function to
enable the security service, n_cst_security

Application manager or
frame window

Establish a Transaction object, connect to the security
database, and call the n_cst_security of_InitSecurity
function

The of_InitSecurity function allows you to set a default
group for the user. The security system uses this group if
there are no other group settings for the user

Windows that require
security

Call the of_SetSecurity function in the window Open
event

CHAPTER 7 PFC Utilities

PFC Library User’s Guide 215

Defining users and groups
Overview To use PFC security, you must define users and groups. A user can be a member

of zero or more groups; user settings always override group settings.

Usage You use the security administration utility to define users and groups, as well
as associate users with groups.

Use an existing target file
If you already have a target file for your security administration utility, add it
to your PowerBuilder workspace, make sure it includes all the PFC libraries in
its library list, and skip the first four steps in the following procedure.

v To define users:

1 Add an Existing Application target to your PowerBuilder workspace
(select File>New from the PowerBuilder menu bar, click the Target tab,
click the Existing Application target icon, and click OK).

2 On the Choose Library and Application page of the target wizard, select
the pfcsecurity_admin application in the PFCSECAD.PBL library in the
PFC\Security directory and click Next.

3 On the Set Library Search Path page of the target wizard, add all the PFC
libraries to the library list and click Next.

4 On the Specify Target File page of the target wizard, click Finish.

The default target filename has the same name as the security application
you selected with a PBT extension.

5 Select Run>Select And Run from the PowerBuilder menu bar, select the
security_admin target, and click OK.

Security administration database and INI file
If there are problems connecting to the PFC.DB database, check the
PFCSECAD.INI file and your workstation’s ODBC settings.

If you have moved the PFC security tables from PFC.DB to some other
database, you must update the Database section of the PFCSECAD.INI
file to reflect the appropriate database connection parameters.

6 Select File>User/Groups from the security administration utiltiy menu bar.

Security

216 PowerBuilder

The User/Group Management window displays:

7 Right-click in the Users column and select Add Item.

The Add User dialog box displays:

8 Type a user name and description. The user name must correspond to a
user ID that your application can access at runtime.

9 Click OK.

10 Continue adding users as necessary.

11 Select File>Save from the menu bar.

v To define groups:

1 Right-click in the Groups column and select Add Group.

CHAPTER 7 PFC Utilities

PFC Library User’s Guide 217

The Add Group dialog box displays:

2 Type a group name, description, and priority. Zero is the highest priority;
however, user specifications override group specifications.

3 Click OK.

4 Continue adding groups as necessary.

5 Select File>Save from the menu bar.

v To associate users with groups:

• Drag the user and drop it over the group.

v To remove a user from a group:

1 Right-click on the user and select Delete Item.

The Delete User from Group dialog box displays.

2 Click OK.

3 Select File>Save from the menu bar.

v To modify a previously defined user or group:

1 Right-click on the item and select Edit Item.

The Edit User or Edit Group dialog box displays.

2 Modify information as necessary.

3 Click OK.

4 Select File>Save from the menu bar.

Security

218 PowerBuilder

Running the security scanner
The security scanner examines all the windows, DataWindows, menus, and
user objects in an application. It saves to the PFC database information on:

• Windows

• Window controls

• For DataWindow controls, information on the columns in the associated
DataWindow object

• Menu items

• User objects and tab controls; collects information on all controls defined
on the user object or tab page

Usage You can run the security scanner from PowerBuilder or you run it from the
security administration utility.

v To run the security scanner from PowerBuilder:

1 To your workspace, add an Existing Application target that uses the
PFCSECSC.PBL library and the pfcsecurity_scanner application.

Use an existing target if available
If there is already a target file for the pfcsecurity_scanner application, just
add this file to your workspace instead of creating a new target file.

2 Select Run>Select And Run, choose the pfcsecurity_scanner target and
click OK.

If you have trouble connecting
If there are problems connecting to the PFC.DB database, check the
PFCSECAD.INI file and your workstation’s ODBC settings.

v To run the security scanner from within the security administration
utility:

1 Select and run the security administration utility (PFCSECAD.PBT).

See “Defining users and groups” on page 215 for steps on adding the
security administration target file to your workspace.

2 Select File>Scan Application from the security administration utility
menu bar.

CHAPTER 7 PFC Utilities

PFC Library User’s Guide 219

The Select Application dialog box displays a list of the applications
defined in the Application section of the PB.INI file:

3 Select the application to be scanned and click Select.

The Select Objects to be Scanned dialog box displays:

4 Press CTRL+click or SHIFT+click to select the objects to be scanned.

Selecting objects
To minimize the size of the security database, do not select objects for
which you will never assign security.

5 Click Scan.

Security

220 PowerBuilder

Scanner executable file
The security administration utility uses the pfcsecsc.exe file to perform the
scan. PowerBuilder installs this file in the PFC Security directory.

6 When scanning completes, click Exit.

v To customize the controls for which security is enabled:

1 Select and run the security administration utility.

2 Select File>Templates from the security administration utility menu bar.

The Template Management window displays:

3 Double-click on the application you just scanned.

A list of windows displays.

4 Double-click on one of the windows.

CHAPTER 7 PFC Utilities

PFC Library User’s Guide 221

A list of controls displays:

5 Modify descriptions as appropriate.

Modifying descriptions on this window can make things clearer when
associating users and groups with windows, window controls, and menu
items.

6 Delete items that you will not secure by right-clicking over the item and
selecting Delete.

Deleting unnecessary items reduces the size of the security database,
increasing performance.

7 When you are through, select File>Save from the menu bar.

8 Continue this process with all objects to be secured.

Defining security for users and groups
After running the scanner to record objects and controls and selectively
deleting items that don’t require securing, you specify security by associating
users and groups with objects and controls.

Usage For each user and group, you enable or disable access to window controls,
DataWindow columns, user objects, and menu items for each object to be
secured.

Users may belong to zero or more groups. User settings always take
precedence over group settings. If there are no user settings, then the group
setting with the highest priority is used (zero is the highest priority).

Security

222 PowerBuilder

v To define security for a user or group:

1 Select and run the security administration utility (PFCSECAD.PBT).

See “Defining users and groups” on page 215 for steps on adding the
security administration target file to your workspace.

2 Select File>Users/Objects from the menu bar.

The User/Object Management window displays:

3 Click the Users drop-down list and select a user for whom to set security.

4 Double-click the application containing the objects to be secured.

5 Select the All radio button (if it’s not already selected).

You are now ready to secure items.

6 For items to be secured, use the Status drop-down list to specify Enabled,
Disabled, or Invisible (Not Set makes no change to the object’s settings).

7 When you are finished, select File>Save from the menu bar.

CHAPTER 7 PFC Utilities

PFC Library User’s Guide 223

8 Continue with the object until you are finished with all users and groups.

9 Continue with other objects.

Implementing security in an application
Once you have defined a security database, enable the security service in your
application.

Usage Enabling the security service in your application involves:

• Enabling the security service

• Establishing a database connection to the database that contains the
security tables and communicating this information to the security service

• Enabling the security service on the appropriate windows

v To enable the security service for an application:

• Call the n_cst_appmanager of_SetSecurity function:

gnv_app.of_SetSecurity(TRUE)

v To establish a connection to the database containing the security tables
and communicate it to the security system:

1 Create a Transaction object and connect to the database (this example
assumes an itr_security instance variable on a customized
n_cst_appmanager descendant):

gnv_app.itr_security = CREATE n_tr
gnv_app.itr_security.of_Init &

(gnv_app.of_GetAppINIFile(), "Security")

gnv_app.itr_security.of_Connect()

Security table placement
To minimize the number of database connections held by your application,
place the security tables in the application database.

Security

224 PowerBuilder

2 Call the n_cst_security of_InitSecurity function:

Integer li_return

li_return = &
gnv_app.inv_security.of_InitSecurity &

(gnv_app.itr_security, "EISAPP", &
gnv_app.of_GetUserID(), "Default")

v To enable security for a window:

• Call the n_cst_security of_SetSecurity function in the window’s Open or
pfc_PreOpen event:

gnv_app.inv_security.of_SetSecurity(this)

Maintaining the security database
The PFC security system tables are delivered in the PFC.DB local database.
The PFC security tables are:

Security_apps
Security_groups
Security_info
Security_template
Security_users

You can use the PFC.DB local database to define users and groups, scan
objects, and define access privileges. However, you will need to migrate these
tables to a server database before deploying applications. The PFC security
system and the security database are designed for easy migration to a server
database:

• All database interactions for PFC security are via DataWindows (there is
no embedded SQL)

• The PFC security system enforces cascading deletes manually

CHAPTER 7 PFC Utilities

PFC Library User’s Guide 225

Usage To enable security for all of your application’s users, move the PFC security
tables to a server database.

v To migrate PFC security tables to a server database:

1 Use the Pipeline painter to move table definitions and data to a server
database. Retain the table and column names as much as possible.

2 Use the DataWindow painter to access the PFC security DataWindows.
Note the following:

• Preserve the DataWindow’s column order and DataWindow column
names.

• If necessary, use the Select Painter to change the name of the
associated database tables or columns to match those on the server
database. Remember not to change the name of the DataWindow
columns.

3 In your application, populate Transaction object fields as appropriate for
the server database containing the security tables.

Library Extender
You use the PFC Library Extender to automatically create and populate an
intermediate extension level between two existing levels, redefining the
inheritance hierarchy.

By supplying the Library Extender with the names of the upper and lower
levels, the Library Extender:

• Creates a new PBL

• Creates objects in the new PBL that descend from objects in the upper
level

Migration Assistant

226 PowerBuilder

• Recreates objects in the lower level such that they descend from objects in
the new PBL

Typically you would use the Library Extender to add an intermediate level (or
levels) between the PFC ancestor level and the PFC extension level. Adding
corporate and departmental extensions to intermediate extension levels allows
the application programmer to make full use of the extension level.

Usage The Library Extender is available on the Tool tab in the New dialog box.

For complete usage information, see the Library Extender online Help.

Migration Assistant
The Migration Assistant scans PowerBuilder libraries (PBLs) and highlights
usage of obsolete functions and events. Obsolete functions and events still
work in the current version of PowerBuilder but may not work in future
versions. If you plan on maintaining an application in the future, it's best to use
current syntax and events.

Usage The Migration Assistant is available on the Tool tab in the New dialog box.

For complete usage information, see the Migration Assistant online Help.

PFC Library User’s Guide 227

C H A P T E R 8 Deploying a PFC Application

About this chapter This chapter explains considerations related to PFC application
deployment.

Contents

Choosing a deployment strategy
You use PFC to build production-strength applications. As with all
production-strength applications, deploying a PFC application requires
careful planning and implementation.

Your goal Your deployment strategy must provide user workstations with everything
they need to execute a PFC application:

• Application executable (EXE) file

• Application PBDs or DLLs (if not using a single EXE file)

• PFC PBDs or DLLs (if not using a single EXE file)

• Other files and entries used by your application (ActiveX controls,
registry entries, INI files, bitmaps, and so on)

• PowerBuilder execution modules (may already be installed on the
user workstation)

• Database client software (may already be installed on the user
workstation)

Topic Page

Choosing a deployment strategy 227

Using PBR files 229

Deploying database tables 229

Deploying PFC dialog box Help 230

Choosing a deployment strategy

228 PowerBuilder

Four deployment
options

A PFC application has the same four deployment options as any other
PowerBuilder application. Each of these options has relative advantages and
disadvantages that you need to consider before choosing a deployment
strategy:

Physical file issues If your applications use Pcode PBDs or compiled
DLLs, they usually need a separate set of physical files for each deployed PFC
application. This is because of the internal interdependencies that trickle down
from high-level extension objects, such as w_master, n_cst_dwsrv,
n_cst_winsrv, and n_cst_dssrv.

See “Setting up the application manager” on page 29.

Using a common set of physical files
If no deployed application has made changes to either the PFC ancestor layer
or the PFC extension layer, applications can share PBD or DLL files. But to
ensure ease of maintenance and upgrade, it’s still best to provide separate
physical PBD and DLL files for each deployed application.

Deployment
option Advantages Disadvantages

Pcode
executable

Single file
Simple deployment

Large (minimum 3M)
To update, you must regenerate the
entire application

Compiled
executable

Single file
Simple deployment
Compiled code

Very large (minimum 8M)
To update, you must regenerate the
entire application

Pcode PBDs Smaller EXE
To update, you can
replace a single PBD

Multiple files
Needs separate set of physical files

Compiled
DLLs

Smaller EXE
Compiled code
To update, you can
replace a single DLL

Multiple files
Needs separate set of physical files

CHAPTER 8 Deploying a PFC Application

PFC Library User’s Guide 229

Using PBR files
PFC ships with six PBR files:

• One for use when placing the bitmaps in the EXE

• A set of five for use when distributing PBDs or DLLs

Use these files as follows:

Deploying database tables
PFC ships with the PFC.DB database.

Table references Although no PFC services reference PFC.DB directly, certain services
reference tables that were originally shipped in PFC.DB:

Deployment
method

PBR file(s)
to use

What happens
when you deploy
with PBR

What happens
when you deploy
without PBR

Placing the
bitmaps in a
single EXE

Pfc.pbr

(This PBR
includes
dynamic
DataWindow
references)

Bitmaps and
dynamically referenced
DataWindow objects
are copied into the EXE

This option will not
work (dynamic
DataWindow
references will fail)

Distributing
PBDs or DLLs

Pfcapsrv.pbr

Pfcdwsrv.pbr

Pfcmain.pbr

Pfcutil.pbr

Pfcwnsrv.pbr

The bitmaps named in
each PBR file are
copied into the
associated PBD or DLL

You must deploy
bitmap files separately
and make sure they are
in a directory that is
accessible at execution
time

PFC service Tables referenced

Error message service (n_cst_error) Messages

Security service (n_cst_security) Security_apps

Security_groupings

Security_info

Security_template

Security_users

Deploying PFC dialog box Help

230 PowerBuilder

What to do To minimize the number of database connections held by your application, it’s
usually best to move these tables to the application database.

In any case, your application deployment strategy must provide for user access
to all database tables required by the application. This includes installing client
software, updating INI files, updating registry entries, and all other database
deployment considerations outlined in the database deployment discussion in
Application Techniques.

Deploying PFC dialog box Help
PFC includes the PFCDLG.HLP file, which contains online Help for PFC
dialog boxes. If your application uses PFC dialog boxes (such as w_find,
w_replace, and w_sortdragdrop) you should deploy PFCDLG.HLP so users
will have dialog box Help.

PFC also includes PFCDLG.RTF, which contains the source text for PFC
dialog box Help. If your application makes specific use of PFC dialog boxes,
you can modify this file and recompile the Help file.

P A R T 4 PFC Tutorial

This part provides a simple tutorial to get you started with
PFC.

This part is for all PFC users.

PFC Library User’s Guide 233

L E S S O N 1 Generate a PFC Application

In this tutorial, you generate a PFC application using the Template
Application wizard. You will then create a user object to inherit from the
PFC application manager object and you will redirect events from the
Application object to the newly created user object.

In this lesson you will:

• Create a PFC application

• Modify the application manager

• Redefine a global variable and review events

• Use the PFC Transaction Object service

How long will this lesson take?
About 20 minutes.

What will you learn about PFC?

• How to create a PFC application using the Template Application
wizard

• How to use n_tr, PFC’s customized Transaction object

• How to use the application manager

Create a PFC application

234 PowerBuilder

Create a PFC application

Where you are
> Create a PFC application

Modify the application manager
Redefine a global variable and review events
Use the PFC Transaction Object service

When you start PowerBuilder, you must open an existing workspace or
generate a new one. In this exercise, you create an application target in a new
PowerBuilder workspace. The application will use and inherit from objects in
the PFC libraries.

Required tutorial setup
This tutorial uses the EAS Demo DB database that installs with PowerBuilder.
This is an Adaptive Server Anywhere database and requires an Adaptive
Server Anywhere engine.

If you do not already have Adaptive Server Anywhere on your local machine
or server, you must install it now. (You can install it from the PowerBuilder
CD.) If you installed PowerBuilder in a nondefault location, you must make
sure that the odbc.ini registry entry defining the EAS Demo DB as a data
source points to the correct location of the Adaptive Server Anywhere engine.

1 Select File>New from the PowerBuilder menu bar.
Make sure that the Workspace page of the New dialog box displays.
Select the Workspace wizard and click OK.

A file selection dialog box displays.

2 Type PFC Tutorial in the File Name box and click OK.

An icon for the new workspace displays in the System Tree. If the System
Tree is not displayed, select the System Tree tool in the toolbar or select
the System Tree menu item in the Window menu.

3 Select File>New from the PowerBuilder menu bar.
Click the Target tab of the New dialog box.
Select the Template Application wizard and click OK.

The wizard displays introductory information about itself.

Lesson 1 Generate a PFC Application

PFC Library User’s Guide 235

4 Click Next twice until you see the Specify New Application And Library
page.
Type my_pfc_app in the Application Name box.

The wizard resets default filenames for the application library and target.

5 Click the ellipsis button next to the Library box.
Navigate to the PFC tutorial directory.
Make sure my_pfc_app.pbl displays in the File Name box and click
Save.

In a typical installation, the PFC tutorial directory is: C:\Program
Files\Sybase\PowerBuilder 9.0\PFC\Tutorial.

6 Click the ellipsis button next to the Target box.
Navigate to the PFC tutorial directory.
Make sure my_pfc_app.pbt displays in the File Name box, click Save
and click Next.

7 Select the PFC-Based Application radio button on the Specify
Application Type page and click Next again.

The Adjust Application Library Search Path page displays. The
my_pfc_app.pbl file is the only library in the list box.

8 Click the ellipsis button next to the Library Search Path list box.

A standard library selection dialog box displays.

9 Navigate to the PFC directory (one level above the PFC Tutorial
directory).
Use CTRL+click or SHIFT+click to select these libraries from the main
layer and the extension layer:

Create a PFC application

236 PowerBuilder

10 Click Open.

The Library Search Path list box redisplays with PFC libraries added to the
list.

11 Click Next twice until you see the Ready To Create Application page.

PowerBuilder summarizes your wizard selections in a list box. The
Generate To-Do List check box is selected.

12 Click Finish.

 PFC main layer libraries PFC extension layer libraries

pfcapsrv.pbl pfeapsrv.pbl

pfcmain.pbl pfemain.pbl

pfcwnsrv.pbl pfewnsrv.pbl

pfcdwsrv.pbl pfedwsrv.pbl

pfcutil.pbl pfeutil.pbl

Lesson 1 Generate a PFC Application

PFC Library User’s Guide 237

Modify the application manager

Where you are
Create a PFC application

> Modify the application manager
Redefine a global variable and review events
Use the PFC Transaction Object service

When you use the Template Application wizard to create a PFC application, it
redirects Application object processing to a PFC application manager. This
strategy provides many benefits, including extensibility and reuse.

You implement the application manager through the n_cst_appmanager
custom class user object or a customized descendant. This tutorial implements
the application manager by creating a descendant of n_cst_appmanager. You
then initialize application-wide variables in the new application manager.

For more information on implementing the application manager, see Chapter
3, “PFC Programming Basics”.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Make sure My_PFC_App. displays in the Target list box.
Select pfeapsrv.pbl in the Libraries drop-down list.
Select User Objects in the Objects of Type drop-down list.

You can enlarge the dialog box to display the full library name.

Modify the application manager

238 PowerBuilder

3 Select n_cst_appmanager in the Object list box and click OK.

The User Object painter workspace displays. The default view layout
scheme for the User Object painter includes a Script view, a Properties
view, a Non-Visual Object list, and a stack of tabbed panes. Within the
stack you can display the Event List, Function List, or Variable view.

Resetting to the default view layout scheme
To reset the layout to the default scheme, select View>Layouts>Default.

4 Make sure Untitled displays as the name of the user object in the first
drop-down list of the Script view.
Make sure the Constructor event displays as the selected event in the
second drop-down list of the Script view.

The purple icon in front of the Constructor event name indicates that a
script is coded for this event in an ancestor object. In PowerBuilder, events
(unlike functions) are triggered first in the ancestor object, then in the
descendent object.

5 Select pfc_n_cst_appmanager from the third drop-down list of the
Script view.
Examine the code for the ancestor object.

Most of the ancestor script is commentary. The code for the ancestor
Constructor event consists of an assignment statement (that assigns the
Application object to an instance variable) and a call to the
GetEnvironment system function that populates the Environment object.

6 Type the following information in the boxes in the Properties view
(replace drive and pathname with your workstation’s path to the PFC
directory):

Property Value

is_appinifile drive:\pathname\pfc\tutorial\pfctutor.ini

is_helpfile drive:\pathname\pfc\tutorial\pfctutor.hlp

is_version PFC 9.0

is_logo drive:\pathname\pfc\tutorial\tutsport.bmp

is_copyright PFC tutorial application

Lesson 1 Generate a PFC Application

PFC Library User’s Guide 239

The first two properties establish an INI file and online Help file for use
with the application. The other properties establish information that will
be used in the application’s About dialog box and splash screen.

If you prefer to add code to the Constructor event
You could type the following lines of code calling PFC functions instead
of filling in the property boxes in the Properties view:

this.of_SetAppIniFile &
("drive:\pathname\pfc\tutorial\pfctutor.ini")
this.of_SetHelpFile &
("drive:\pathname\pfc\tutorial\pfctutor.hlp")
this.of_SetLogo &
("drive:\pathname\pfc\tutorial\tutsport.bmp")
this.of_SetCopyright("PFC Tutorial application.")
this.of_SetVersion("PFC 9.0")

7 Select File>Save As from the menu bar.

The Save User Object dialog box displays.

Modify the application manager

240 PowerBuilder

8 Select my_pfc_app.pbl in the Application Libraries box.
Type n_cst_tutappmanager in the User Objects box.
Type the following comment in the Comments box:

This is the PFC tutorial application manager.

9 Click OK.

PowerBuilder saves the user object and redisplays it in the User Object
painter workspace. The n_cst_tutappmanager name now displays in the
painter title bar, in the Non-Visual Object List view, and in the first
drop-down list of the Script view.

10 Select File>Close from the menu bar.

Lesson 1 Generate a PFC Application

PFC Library User’s Guide 241

Redefine a global variable and review events

Where you are
Create a PFC application
Modify the application manager

> Redefine a global variable and review events
Use the PFC Transaction Object service

When you generate a PFC application using the Template Application wizard,
all the events of the Application object call corresponding events in the
application manager (n_cst_appmanager or a descendant of
n_cst_appmanager). For example, the Open event calls the application
manager’s pfc_Open event, the Close event calls pfc_Close, and so on.

PFC uses the gnv_app global variable to access the application manager at
runtime. Now you will modify this variable to use the customized application
manager and you will review the events of the Application object that are
redirected to the application manager.

1 Click the Open button in the PowerBar.
Select my_pfc_app.pbl in the Libraries list box.
Select Applications in the Objects of Type drop-down list.

The Object box displays the only application (my_pfc_app) in the library
file you selected.

2 Click OK.

The Application painter displays the my_pfc_app Application object.

3 Make sure the Script view displays the Open event for the my_pfc_app
Application object.

The first line of code is an assignment statement that creates an instance of
the application manager and assigns it to the global variable gnv_app. The
next line of code calls the pfc_Open event of the application manager.

Redefine a global variable and review events

242 PowerBuilder

4 Change the first line of code to:

gnv_app = CREATE n_cst_tutappmanager

The code will now create an instance of the application manager
descendant, not the PFC ancestor. You do not change the second line of
code, but you will change the global variable data type declaration.

PFC login window
The PFC login window is not used in this tutorial, but if you want a login
window at runtime, you could add the following line to the application
object Open event:

gnv_app.of_LogonDlg ()

Typing this line before the call to the pfc_open event assures that the login
window will open before the connection is made to the database. If you
want to make a database connection with user-entered information from
the login window, you would have to add code to the Clicked event of the
OK button in the w_logon window—and then make sure that that
information is not overwritten by information in pfctutor.ini that you
selected as the application INI file.

5 Select Global Variables in the second drop-down list in the Variable
view.

The Variable view displays the global variable declarations.

Using the Script view
You can use the Script view instead of the Variable view, if you select
Declare in the first drop-down list. PowerBuilder will prevent you from
opening two views to the same script, so you won’t be able to do this when
the Variable view displays the Global Variables script.

Lesson 1 Generate a PFC Application

PFC Library User’s Guide 243

6 Modify the gnv_app global variable declaration to use
n_cst_tutappmanager:

n_cst_tutappmanager gnv_app

By defining gnv_app as type n_cst_tutappmanager, you gain access to all
n_cst_appmanager functionality as well as any new instance variables,
user events, and functions defined in n_cst_tutappmanager.

7 Make sure my_pfc_app displays in the first drop-down list of the
Script view.
Review the Application object’s precoded events:

Event What it does

Close Calls the application manager’s pfc_Close event and
destroys gnv_app

ConnectionBegin Calls the application manager’s pfc_ConnectionBegin
event, passing three arguments and returning the
connection privilege (for use with distributed applications)

ConnectionEnd Calls the application manager’s pfc_ConnectionEnd event
(for use with distributed applications)

Idle Calls the application manager’s pfc_Idle event

SystemError Calls the application manager’s pfc_SystemError event

Use the PFC Transaction Object service

244 PowerBuilder

Use the PFC Transaction Object service

Where you are
Create a PFC application
Modify the application manager
Redefine a global variable and review events

> Use the PFC Transaction Object service

Now you will look at the definition for the default Transaction object. In
standard PowerBuilder applications, SQLCA (SQL Communications Area) is
defined as the default Transaction object. In PFC applications, the default
Transaction object is assigned by the PFC transaction object service.

The n_tr user object is a Transaction object defined in pfemain.pbl. It inherits
from the pfc_n_tr object in the pfcmain.pbl library. In this exercise, you will
see how the SQLCA Transaction object is registered with the PFC transaction
registration service (the registration was set automatically by the Template
Application wizard).

If you are not continuing directly from the previous exercise
If you closed the Application painter, you must reopen it to display the global
SQLCA variables that are automatically part of any PowerBuilder application.

1 Click the Additional Properties button on the General page of the
Properties view for the Application object.

The Application property sheet shows additional properties in a tab page
format.

Lesson 1 Generate a PFC Application

PFC Library User’s Guide 245

2 Click the Variable Types tab.

3 Look at the SQLCA variable definition.

PowerBuilder uses PFC’s n_tr transaction for SQLCA. If you had
generated an application that did not specify PFC libraries, the value
assigned to the SQLCA global variable would have been "transaction" .

4 Look at the Message variable definition.

The global variable calls the PFC’s n_msg service.

5 Close the Application property sheet.
Select File>Save from the menu bar.

PowerBuilder saves the updated Application object.

6 Select File>Close from the menu bar.

The Application painter closes.

Use the PFC Transaction Object service

246 PowerBuilder

PFC Library User’s Guide 247

L E S S O N 2 Create the Frame Window

In a typical MDI application, you define a window whose type is MDI
frame and open other windows as sheets within the frame. PFC provides
w_frame, a frame window that includes many MDI features, including a
status bar and a sheet manager.

In this lesson you will:

• Create a descendent frame window

• Define pre- and post-open processing

• Add script to open the frame window

• Run the application

How long will this lesson take?
About 15 minutes.

What will you learn about PFC?

• How to open a sheet using a string passed via the message router

• How to enable the status bar service

• How to enable the sheet management service

• How to connect to a database using functions provided by n_tr

Create a descendent frame window

248 PowerBuilder

Create a descendent frame window

Where you are
> Create a descendent frame window

Define pre- and post-open processing
Add script to open the frame window
Run the application

Now you will create a frame window by inheriting from w_frame. Then you
will define a script for the pfc_Open script for the new frame window. PFC
calls this event when the user selects File>Open from the menu bar. You can
call it from other parts of the application as necessary to open sheet windows.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Select the pfemain.pbl file in the Libraries list box.
Select Windows in the Objects of Type drop-down list.
Select w_frame in the Object list box and click OK.

The Window painter workspace displays.

3 Type PFC Tutorial Frame in the Title box in the Properties view.
Click the Toolbar tab in the Properties view.
Clear the ToolbarVisible check box.

You will not use a toolbar in the frame window, only in the sheet windows.

4 Double-click pfc_Open in the Event List view.

The Script view displays for the pfc_Open event. If a Script view is part of
the stack with the Event List view, the Script pane will display in place of
the Event List pane.

Finding the pfc_Open event in the Event List view
The events in the Event List view (and Script view) are alphabetized in two
different series—events with code are listed before events without code.
The pfc_Open event is not precoded in any of its ancestor scripts.

Lesson 2 Create the Frame Window

PFC Library User’s Guide 249

5 Type these lines in the Script view:

String ls_sheet
w_sheet lw_sheet

ls_sheet = Message.StringParm
OpenSheet(lw_sheet, ls_sheet, this, 0, Layered!)

This script will open an instance of the sheet window specified in the
passed StringParm. You will initialize the StringParm value for two sheet
windows later in this tutorial.

Define pre- and post-open processing

250 PowerBuilder

Define pre- and post-open processing

Where you are
Create a descendent frame window

> Define pre- and post-open processing
Add script to open the frame window
Run the application

Now you will define two scripts: one for the pfc_PreOpen event to enable the
sheet manager and status bar services, and one for the pfc_PostOpen event to
connect to the database.

1 Select pfc_PreOpen from the second drop-down list in the Script view
and type these lines:

this.of_SetSheetManager(TRUE)
this.of_SetStatusBar(TRUE)
this.inv_statusbar.of_SetTimer(TRUE)

This script enables the sheet management service, which provides the
ability to minimize all sheets and undo the last sheet arrange command. It
also enables the status bar service, displaying date and time information in
the bottom-right corner of the frame.

2 Select pfc_PostOpen from the second drop-down list in the Script view
and type these lines:

Integer li_return
String ls_inifile

ls_inifile = gnv_app.of_GetAppIniFile()

IF SQLCA.of_Init(ls_inifile,"Database") = -1 THEN
 MessageBox("Database", &
 "Error initializing from " + ls_inifile)
 HALT CLOSE
END IF
IF SQLCA.of_Connect() = -1 THEN
 MessageBox("Database", &
 "Unable to connect using " + ls_inifile)
 HALT CLOSE
ELSE
 this.SetMicroHelp ("Connection complete")
END IF

Lesson 2 Create the Frame Window

PFC Library User’s Guide 251

This script accesses database connection parameters with the transaction
service (n_tr) of_Init function and connects with the transaction service
of_Connect function. If these functions succeed, the script displays a
message in the status bar.

Extending the ancestor script
The purple icon in front of the pfc_postopen event indicates that an
ancestor window is scripted for this event. By default, events are extended:
script is processed first from ancestor objects, then from descendent
objects. You can examine this script by selecting pfc_w_frame from the
third drop-down list in the Script view.

3 Select File>Save from the menu bar.

The Save Window dialog box displays.

4 Make sure my_pfc_app.pbl is selected in the Application Libraries list
box.
Type w_tut_frame in the Windows box.
Type the following comment in the Comments box:

Frame window for the PFC tutorial application.

5 Click OK.
Select File>Close from the menu bar.

PowerBuilder saves the window and you close the Window painter.

Add script to open the frame window

252 PowerBuilder

Add script to open the frame window

Where you are
Create a descendent frame window
Define pre- and post-open processing

> Add script to open the frame window
Run the application

Now you will add code to the application manager pfc_Open event to open the
frame window.

1 Click the Open button in the PowerBar.
Select my_pfc_app.pbl in the Libraries list box.
Select User Objects in the Objects of Type drop-down list.

The n_cst_tutappmanager user object is the only user object in this library.
It is selected in the Object list box.

2 Click OK.

The User Object painter workspace displays.

3 Make sure n_cst_tutappmanager displays in the first drop-down list in
the Script view.
Select pfc_Open from the second drop-down list.
Type these lines for the pfc_Open script:

this.of_splash (1)
Open(w_tut_frame)

The first line opens the PFC splash screen. The second line opens the MDI
frame window for the application. The splash screen will stay open for one
second after the n_cst_tutappmanager establishes the database connection.

4 Select File>Save from the menu bar.

PowerBuilder saves the script changes.

5 Select File>Close from the menu bar.

The User Object painter closes.

Lesson 2 Create the Frame Window

PFC Library User’s Guide 253

Run the application

Where you are
Create a descendent frame window
Define pre- and post-open processing
Add script to open the frame window

> Run the application

1 Click the Run or the Select And Run button in the PowerBar.
Make sure the my_pfc_app target is selected and click OK.

The splash window displays and the database connection is established.
The splash window uses information you entered for instance variables of
the n_cst_tutappmanager user object:

If there is a database connection error, you may need to modify the
pfctutor.ini file to specify a valid data source for EAS Demo DB V3.

Run the application

254 PowerBuilder

The MDI frame window displays behind the splash window and remains
open after the splash window closes.

2 Select File>Exit from the menu bar.

The application closes.

PFC Library User’s Guide 255

L E S S O N 3 Create Menus

In PFC applications, all menus typically inherit from m_master (or an
m_master descendant) and add, modify, and hide items as needed. The
m_master ancestor menu provides items for use with all PFC windows,
DataWindows, and visual controls.

Menu usage
This tutorial uses one approach to menu implementation. PFC allows you
to implement other approaches, include modifying m_master directly and
defining menus from scratch.

In this lesson you will:

• Create a descendent menu

• Add and modify items

• Create a frame menu

• Associate the frame window with a menu

• Create a menu for the w_products sheet

• Create a menu for the w_product_report sheet

How long will this lesson take?
About 40 minutes.

What will you learn about PFC?

• How to create a customized descendant of m_master

• How to open a sheet, passing the window name in
Message.StringParm

Create a descendent menu

256 PowerBuilder

Create a descendent menu

Where you are
> Create a descendent menu

Add and modify items
Create a frame menu
Associate the frame window with a menu
Create a menu for the w_products sheet
Create a menu for the w_product_report sheet

Now you will create a master menu for the tutorial by inheriting from the
m_master menu.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Select pfewnsrv.pbl in the Libraries list box.
Select Menus in the Objects of Type drop-down list.
Select m_master and click OK.

 The Menu painter workspace displays.

3 Select File>Save As from the menu bar.

The Save Menu dialog box displays.

4 Select my_pfc_app.pbl in the Application Libraries list box.
Type m_tut_master in the Menus box.
Type the following comment in the Comments box:

Menu ancestor for tutorial frame and sheet menus.

5 Click OK.

PowerBuilder saves the menu.

Lesson 3 Create Menus

PFC Library User’s Guide 257

Add and modify items

Where you are
Create a descendent menu

> Add and modify items
Create a frame menu
Associate the frame window with a menu
Create a menu for the w_products sheet
Create a menu for the w_product_report sheet

Now you will add and modify menu items on m_tut_master. You will use the
Script, WYSIWYG, and Properties views of the Menu painter to make these
changes.

Modifying m_master directly
The PFC tutorial creates an m_master descendant, which you modify for use
as a master menu. In most applications you can make these modifications to
m_master, eliminating a layer of inheritance.

1 Select m_file.m_open in the first drop-down list in the Script view.

This is the m_master (and m_tut_master) name for the File>Open menu
item.

2 Select the Clicked event in the second drop-down list in the Script
view.

The purple icon in front of the event name indicates that the Clicked event
in an ancestor menu is scripted. By default, events are extended: script is
processed first from ancestor objects, then from descendent objects.

3 Select Edit>Extend Ancestor Script in the PowerBuilder menu bar.

You clear the checkmark in front of the Extend Ancestor Script menu item.
This will allow you to open a submenu with the application File>Open
menu command without processing the ancestor script for the Clicked
event of the Open menu item.

4 Type this comment in the Script view:

// File->Open script override.

Add and modify items

258 PowerBuilder

5 Click the File menu in the WYSIWYG view.
Right-click the Open menu item below the File menu.
Select Insert Submenu Item from the pop-up menu.

An empty box displays next to Open menu item. The cursor flashes inside
the box, prompting you to define a submenu item for File>Open.

6 Type &Product List in the empty box and press ENTER.

The ampersand (&) converts the character that follows it to a menu hot
key. After you press ENTER, the Product List menu item in the WYSIWYG
view appears as it will at runtime: with an underscore under the P, and
without the ampersand.

In the Text box in the Properties view, the ampersand is not replaced by the
underscore. The Name box in the Properties view displays the normalized
menu name: m_productlist.

Using the Properties view to enter the item text
If you click away from the WYSIWYG view before typing the menu item
name, the box for the name will be blackened and you will not be able to
modify it. In this case, clear the Lock Name box in the Properties view and
type &Product List in the Text box in the Properties view. The value in the
Name box will be changed automatically when you click elsewhere in the
painter.

Lesson 3 Create Menus

PFC Library User’s Guide 259

7 Type Product list for the MicroHelp box in the Properties view.
Double-click Product List in the WYSIWYG view.

The Script view displays m_file.m_open.m_productlist in the first
drop-down list. When you created the Product List menu item,
PowerBuilder added it to the list.

8 Make sure the Clicked event is selected in the second drop-down list
in the Script view.
Type these lines:

Message.StringParm = "w_products"
of_SendMessage("pfc_Open")

These lines initialize the StringParm value and call the of_SendMessage
menu function, which then calls the pfc_Open event on the frame window.

Menu service
You can also call the n_cst_menu of_SendMessage function to perform
this functionality.

9 Right-click the Product List menu item in the WYSIWYG view.
Select Insert Menu Item At End from the pop-up menu.

An empty box displays below the Product List menu item.

10 Type Product &Sales Report for the new menu item and click ENTER.
Type Product sales report in the MicroHelp in the Properties view.
Double-click Product Sales Report in the WYSIWYG view.

The Script view displays m_file.m_open.m_productsalesreport in the first
drop-down list.

11 Make sure the Clicked event is selected in the second drop-down list.
Type the following lines:

Message.StringParm = "w_product_report"
of_SendMessage("pfc_Open")

These lines initialize the StringParm value and call the of_SendMessage
menu function, which then calls the pfc_Open event on the frame window.

12 Click the File>New menu item in the WYSIWYG view.

The Properties view displays properties of the m_new menu.

Add and modify items

260 PowerBuilder

13 Clear the Visible check box on the General page of the Properties view.
Select the Toolbar tab of the Properties view.
Clear the ToolbarItemVisible check box on the Toolbar page.

Since you will not be adding code to the File>New menu Clicked event in
the tutorial application, you make the menu item and its toolbar picture
invisible at runtime.

In the previous lesson you made a selection to prevent the display of a
toolbar for the application frame window. But the user can still opt to
display a frame menu toolbar from an application that uses PFC window
services. Now you ensure that even if the user makes this selection, the
File>New toolbar picture will not be displayed.

Dithered appearance in WYSIWYG view
Menu items that will not be visible at runtime are displayed in a dithered
format in the WYSIWYG view. Even though the menu item will not be
visible, if its property sheet shows a toolbar picture for the menu item, you
must clear the visible button on the toolbar page, or the toolbar picture will
be displayed (or displayable by user selection) at runtime.

14 Click the Insert menu bar item in the WYSIWYG view.
Clear the Visible check box on the General page of the Properties view.

Menu items under the Insert menu will not be selectable at runtime, even
though their Visible property is set to TRUE.

15 Hide menu items and toolbar pictures as follows:

Menu Menu item Hide item Hide toolbar picture

File New Yes (done) Yes (done)

Open No Yes

Save As Yes Not visible by default

Edit Paste Special Yes No picture to hide

m_dash23 (separator
line below Select All)

Yes No picture to hide

Find Yes Yes

Replace Yes Yes

m_dash24 (separator
line below Replace)

Yes No picture to hide

Update Links Yes No picture to hide

Object Yes No picture to hide

Lesson 3 Create Menus

PFC Library User’s Guide 261

Hiding the items and toolbars separately
It may be quicker to go down the list once to hide the menu items and a
second time to hide the toolbars. This way you avoid clicking back and
forth between the General page and the Toolbar page of the Properties
view.

16 Click the Save button in PainterBar1.
Click the Close button in PainterBar1.

PowerBuilder saves the updated menu.

View Ruler Yes No picture to hide

m_dash31 (separator
line below Ruler)

Yes No picture to hide

Filter Yes No picture to hide

Menu Menu item Hide item Hide toolbar picture

Create a frame menu

262 PowerBuilder

Create a frame menu

Where you are
Create a descendent menu
Add and modify items

> Create a frame menu
Associate the frame window with a menu
Create a menu for the w_products sheet
Create a menu for the w_product_report sheet

Now you will create a frame menu by inheriting from the m_tut_master menu.
The main portion of this exercise is hiding menus and menu items that don’t
apply when only the frame is displayed.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Make sure my_pfc_app.pbl is selected in the Libraries list box.
Make sure Menus is selected in the Objects of Type drop-down list.
Select m_tut_master in the Object list box and click OK.

The Menu painter workspace displays.

3 Click the Save button in PainterBar1.

The Save Menu dialog box displays.

4 Type m_tut_frame in the Menus box.
Type the following comment in the Comments box and click OK:

Frame menu for PFC tutorial application.

PowerBuilder saves the menu and displays the Menu painter workspace.

5 Using the WYSIWYG view and the Properties view, hide the following
menu bar items: Edit menu, View menu, and Tools menu.

The frame menu bar for the tutorial application will only show the File,
Window, and Help menus.

Lesson 3 Create Menus

PFC Library User’s Guide 263

6 Hide menu items and toolbar button pictures as follows:

7 Select File>Save from the menu bar.

PowerBuilder saves the updated menu.

8 Select File>Close from the menu bar.

The Menu painter closes.

Menu Menu item Hide item Hide toolbar picture

File Close Yes Not visible by default

Save Yes Yes

m_dash12
(separator line
below Save As)

Yes No picture to hide

Print Yes No picture to hide

Print Preview Yes Yes

Print Immediate Hidden in ancestor Yes

Edit Undo Not necessary,
Edit menu hidden

Yes

Cut Not necessary,
Edit menu hidden

Yes

Copy Not necessary,
Edit menu hidden

Yes

Paste Not necessary,
Edit menu hidden

Yes

Clear Not necessary,
Edit menu hidden

Not visible by default

Associate the frame window with a menu

264 PowerBuilder

Associate the frame window with a menu

Where you are
Create a descendent menu
Add and modify items
Create a frame menu

> Associate the frame window with a menu
Create a menu for the w_products sheet
Create a menu for the w_product_report sheet

Now you will associate the frame window with m_tut_frame, the frame menu
you just created.

1 Click the Open button in the PowerBar.

The Open dialog box displays.

2 Select my_pfc_app.pbl in the Libraries list box.
Select Windows in the Objects of Type drop-down list.
Select w_tut_frame in the Object list box and click OK.

The Window painter workspace displays.

3 Click the ellipsis button next to the MenuName box in the Properties
view.

The Select Object dialog box displays:

4 Select m_tut_frame and click OK.

The Window property sheet displays with the selected menu.

5 Select File>Save from the menu bar.

PowerBuilder saves the updated window.

6 Select File>Close from the menu bar.

The Window painter closes.

Lesson 3 Create Menus

PFC Library User’s Guide 265

Create a menu for the w_products sheet

Where you are
Create a descendent menu
Add and modify items
Create a frame menu
Associate the frame window with a menu

> Create a menu for the w_products sheet
Create a menu for the w_product_report sheet

Now you will create a sheet menu by inheriting from m_tut_master, the PFC
tutorial master menu.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Select my_pfc_app.pbl in the Libraries list box.
Select Menus in the Objects of Type drop-down list.
Select m_tut_master and click OK.

The Menu painter workspace displays. You will leave the Edit, View, and
Tools menus visible for the sheet menu.

3 Hide menu items and toolbars as follows:

4 Select File>Save As from the menu bar.

The Save Menu dialog box displays.

Menu Menu item Hide item Hide toolbar picture

File Print Yes No picture to hide

Print Preview Yes Yes

View m_dash35 (separator
line below Last)

Yes No picture to hide

m_dash36 (separator
line below Filter)

Yes No picture to hide

Zoom Yes No picture to hide

Create a menu for the w_products sheet

266 PowerBuilder

5 Type m_products in the Menus box.
Type the following line in the Comments box and click OK:

Sheet menu for w_products window.

PowerBuilder saves your new menu as a descendant of m_tut_master.

Lesson 3 Create Menus

PFC Library User’s Guide 267

Create a menu for the w_product_report sheet

Where you are
Create a descendent menu
Add and modify items
Create a frame menu
Associate the frame window with a menu
Create a menu for the w_products sheet

> Create a menu for the w_product_report sheet

Now you will create a sheet menu for w_product_report by inheriting from
m_tut_master (the PFC tutorial master menu).

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Select my_pfc_app.pbl in the Libraries list box.
Select Menus in the Objects of Type drop-down list.
Select m_tut_master and click OK.

The Menu painter workspace displays.

3 Hide the Edit menu bar item.

You will prevent the user from modifying the product reports or updating
the database at runtime.

4 Hide menu items and toolbar pictures as follows:

Menu Menu item Hide item Hide toolbar picture

File Save Yes Yes

m_dash12 (separator
line below Save As)

Yes No picture to hide

Edit Undo Not necessary,
Edit menu hidden

Yes

Cut Not necessary,
Edit menu hidden

Yes

Copy Not necessary,
Edit menu hidden

Yes

Paste Not necessary,
Edit menu hidden

Yes

Create a menu for the w_product_report sheet

268 PowerBuilder

5 Select File>Save As from the menu bar.

The Save Menu dialog box displays.

6 Type m_product_report in the Menus box.
Type the following line in the Comments box and click OK.

Sheet menu for w_products_report window.

PowerBuilder saves your new menu as a descendant of m_tut_master.

7 Close the Menu painter.

Clear Not necessary,
Edit menu hidden

Not visible by default

View Sort Yes No picture to hide

m_dash36 (separator
line below Filter)

Yes No picture to hide

Menu Menu item Hide item Hide toolbar picture

PFC Library User’s Guide 269

L E S S O N 4 Build the First Sheet Window

You inherit from PFC’s w_sheet window to create MDI sheets.

In this lesson you will:

• Add a library to the library list

• Create a descendent window

• Add a DataWindow control

• Enable DataWindow services

• Retrieve rows

• Run the application

How long will this lesson take?
About 30 minutes.

What will you learn about PFC?

• How to create a descendant of the w_sheet window

• How to enable the DataWindow property, row selection, and row
management services

• How to use the u_dw DataWindow control

• How to add database access and update functionality to u_dw user
events

Add a library to the library list

270 PowerBuilder

Add a library to the library list

Where you are
> Add a library to the library list

Create a descendent window
Add a DataWindow control
Enable DataWindow services
Retrieve rows
Run the application

You will now add a library to the application target library list. The library you
will add contains DataWindow objects created for this tutorial.

1 Right-click the my_pfc_app target on the Workspace page of the
System Tree.
Select Properties from the pop-up menu.

The Library List page of the Properties dialog box displays all the libraries
in the target search path.

2 Click the Browse button.
Navigate to the PFC\Tutorial directory.
Select pfctutor.pbl from the directory file list and click Open.

The pfctutor.pbl library appears at the bottom of the Library Search Path
list box.

3 Click OK.

Lesson 4 Build the First Sheet Window

PFC Library User’s Guide 271

Create a descendent window

Where you are
Add a library to the library list

> Create a descendent window
Add a DataWindow control
Enable DataWindow services
Retrieve rows
Run the application

Now you will create a sheet window by inheriting from the w_sheet window.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Select pfemain.pbl in the Libraries list box.
Select Windows in the Objects of Type drop-down list.
Select w_sheet in the Object list box and click OK.

 The Window painter workspace displays.

3 Type Product List in the Title box in the Properties view.

This defines a title for the sheet window.

4 Click the ellipsis button next to the MenuName box.

The Select Object dialog box displays.

5 Select pfc_my_app.pbl in the Application Libraries list box.
Select m_products and click OK.

The Window painter redisplays with the MenuName box filled in.

6 Select File>Save As from the menu bar.

The Save Window dialog box displays. The pfc_my_app.pbl file is
selected in the Application Libraries list box.

7 Type w_products in the Windows box.
Type the following line in the Comments box and click OK:

Sheet window for product list.

Add a DataWindow control

272 PowerBuilder

Add a DataWindow control

Where you are
Add a library to the library list
Create a descendent window

> Add a DataWindow control
Enable DataWindow services
Retrieve rows
Run the application

Now you will add a DataWindow control to the w_products window. This
DataWindow control is based on PFC’s u_dw DataWindow user object.

1 Select and click the UserObj button in PainterBar1 (not the PowerBar).
or
Select Insert>Control>UserObject from the menu bar.

If you don’t see the UserObj button
To click the UserObj button, you first need to select the UserObj icon from
a drop-down list of control buttons in PainterBar1 (this button typically
displays a command button when the Window painter opens).

The Select Object dialog box displays.

2 Select pfemain.pbl in the Application Libraries list box.
Select u_dw in the User Objects list box and click OK.

U_dw is a standard visual user object based on a DataWindow control that
includes precoded events, instance variables, and functions to enable and
disable PFC DataWindow services.

3 Click in the upper-left corner of the window in the Layout view.

Lesson 4 Build the First Sheet Window

PFC Library User’s Guide 273

PowerBuilder places a DataWindow control at the selected location. This
DataWindow control is a descendant of u_dw, with access to u_dw events,
functions, and instance variables:

4 Select the text dw_1 in the Name box of the Properties view.
Type dw_list in the Name box.

Make sure the new control is selected
If you do not see the name dw_1 in the Name box, click the control you
just added in the Layout view. When the control is selected in the Layout
view, it is also selected in the Properties view.

5 Click the ellipsis button next to the DataObject box in the Properties
view.

The Select Object dialog box displays.

6 Select pfctutor.pbl in the Application Libraries list box.
Select d_prodlist in the DataWindows list box and click OK.

The DataWindow painter redisplays.

Add a DataWindow control

274 PowerBuilder

7 Make the control almost as big as the window in the Layout view,
maximizing the Layout view if necessary:

8 Select File>Save from the menu bar.

PowerBuilder saves the updated window.

Lesson 4 Build the First Sheet Window

PFC Library User’s Guide 275

Enable DataWindow services

Where you are
Add a library to the library list
Create a descendent window
Add a DataWindow control

> Enable DataWindow services
Retrieve rows
Run the application

Now you will use the Script view of the Window painter to add PowerScript
code to the DataWindow control. The script you will add calls functions to
enable PFC DataWindow sort, row selection, and row management services.

1 Select dw_list from the first drop-down list in the Script view.
Select the Constructor event from the second drop-down list.

The third drop-down list in the Script view displays the parent window
name, w_products. There is no code yet for the user object Constructor
event, either in the current object or in the u_dw and pfc_u_dw ancestor
objects.

2 Type the following script for the Constructor event:

this.of_SetRowSelect(TRUE)
this.of_SetRowManager(TRUE)
this.of_SetSort(TRUE)
this.of_SetProperty(TRUE)
this.of_SetTransObject(SQLCA)

These lines enable the property, row selection, row management, and sort
services for the DataWindow. They also set the Transaction object for the
DataWindow.

Using drag and drop from the System Tree
You can drag and drop methods and properties from the System Tree to the
Script view. When you drag and drop a function such as of_SetRowSelect,
PowerBuilder adds comments that serve as placeholders and give the data
types for any arguments of the function.

Enable DataWindow services

276 PowerBuilder

3 Add the following script after the lines you just typed:

this.inv_rowselect.of_SetStyle &
 (dw_list.inv_rowselect.EXTENDED)
this.inv_sort.of_SetStyle &
 (dw_list.inv_sort.DRAGDROP)
this.inv_sort.of_SetColumnHeader(TRUE)

These lines initialize the row selection and sort services.

The row selection service of_SetStyle function enables extended row
selection with the CTRL and SHIFT keys. The sort service of_SetStyle
function instructs PFC to display a drag-and-drop sort dialog box when the
user selects View>Sort from the menu bar.

The sort service of_SetColumnHeader function enables sorting by
clicking on column headers, a feature found in many current applications.

4 Add the following script after the lines you just typed:

IF this.of_Retrieve() = -1 THEN
SQLCA.of_Rollback()
MessageBox("Error","Retrieve error")

ELSE
SQLCA.of_Commit()
this.SetFocus()

END IF

These lines call the of_Retrieve function for the user object. Since this
function is not coded in the u_dw control, PowerBuilder will parse the
code for the same function in the pfc_u_dw ancestor.

Lesson 4 Build the First Sheet Window

PFC Library User’s Guide 277

5 Click the Compile button in PainterBar2.

PowerBuilder compiles the script you typed for the dw_list Constructor
event.

Retrieve rows

278 PowerBuilder

Retrieve rows

Where you are
Add a library to the library list
Create a descendent window
Add a DataWindow control
Enable DataWindow services

> Retrieve rows
Run the application

Now you will add PowerScript code that retrieves rows from the database. In
the last exercise, the call you made to the of_Retrieve function triggers the
pfc_Retrieve event when the PFC Linkage service is not running. (You do not
start the Linkage service in the tutorial application.)

Since events are extended by default, PowerBuilder parses the event script in
both the pfc_u_dw ancestor, and then in the current u_dw control.

1 Select pfc_Retrieve from the second drop-down list in the Script view.

There is already script for this event in the pfc_u_dw ancestor control.
Now you will add code to extend the ancestor script.

2 Type this script:

Return this.Retrieve()

This line returns the Retrieve function return value, which gives the
number of rows in the primary buffer if the retrieve is successful.

3 Select File>Save from the menu bar.

PowerBuilder compiles the script and saves the window.

4 Select File>Close from the menu bar.

The Window painter closes.

Lesson 4 Build the First Sheet Window

PFC Library User’s Guide 279

Run the application

Where you are
Add a library to the library list
Create a descendent window
Add a DataWindow control
Enable DataWindow services
Retrieve rows

> Run the application

Now you will make sure the sheet window opens properly by running the PFC
tutorial application.

1 Click the Run button in the PowerBar.

The application connects to the database and displays the PFC tutorial
frame window. Only the File, Windows, and Help menus are visible in the
MDI frame menu bar.

2 Select File>Open>Product List from the menu bar.

Run the application

280 PowerBuilder

The w_products window displays:

3 Select multiple rows by holding the CTRL or SHIFT key down while
clicking before the first column in the rows you want to select.
Sort rows by clicking in the column headers.
Click the same column header twice to change the order of the sort.

You test the PFC selection and sort services.

Selecting multiple rows
You must click in front of the rows you want to select—clicking inside the
rows does not select them.

4 Click the right mouse button over one of the columns in the
DataWindow.

Lesson 4 Build the First Sheet Window

PFC Library User’s Guide 281

The DataWindow displays a pop-up menu, providing quick access to
common actions:

5 Select DataWindow Properties.

The DataWindow Properties dialog box displays. You can enable or
disable DataWindow services from this dialog box, and you can modify
the properties of services that are enabled.

6 Click the Calculator check box in the list of DataWindow services.
Click the Property button.

Run the application

282 PowerBuilder

If the Property button is grayed
The Property button is only enabled (not grayed) if the selected
DataWindow service is enabled.

The Calculator Properties dialog box displays. The 2 columns that have
numeric data types (id and unit_price) are listed on the General page of the
Calculator Properties dialog box.

7 Select the Register check box for the unit_price column.
Select DDLB With Arrow from the drop-down list for the unit_price
column.

8 Click the Syntax tab.

The Syntax page displays the PowerScript code that sets the properties you
just selected.

9 Click OK twice.

You can now use a drop-down calculator in the Unit Price column to
change column values.

Displaying the modified column values
The values entered with the drop-down calculator (or from the keyboard)
will display with the appropriate column display formats—in this case,
with a dollar sign and two decimal places—when the user clicks in a
different row or column.

PFC Library User’s Guide 283

You can try enabling other DataWindow services and changing their
properties.

10 Select File>Exit from the menu bar.

The runtime application closes.

Run the application

284 PowerBuilder

PFC Library User’s Guide 285

L E S S O N 5 Build the Second Sheet Window

You inherit from PFC’s w_sheet window to create a second MDI sheet
window.

In this lesson you will:

• Create a descendent window

• Add a DataWindow control

• Enable report and print preview services

• Run the application

How long will this lesson take?
About 10 minutes.

Create a descendent window

286 PowerBuilder

Create a descendent window

Where you are
> Create a descendent window

Add a DataWindow control
Enable report and print preview services
Run the application

Now you will create a sheet window by inheriting from the w_sheet window.

1 Click the Inherit button in the PowerBar.

The Inherit From Object dialog box displays.

2 Click pfemain.pbl in the Libraries list box.
Select Windows from the Objects of Type drop-down list.
Select w_sheet from the Object list box and click OK.

The Window painter workspace displays.

3 Type Product Sales Report in the Title box in the Properties view.

This defines a title for the new sheet window.

4 Click the ellipsis button next to the MenuName box in the Properties
view.

The Select Object dialog box displays.

5 Select my_pfc_app.pbl in the Application Libraries list box.
Select m_product_report in the Menus list box and click OK.

The Window property sheet redisplays with the Menu Name field filled in.

6 Select File>Save As from the menu bar.

The Save Window dialog box displays.

7 Type w_product_report in the Windows box.
Type the following line in the Comments box and click OK.

This is the report sheet for the PFC tutorial.

Lesson 5 Build the Second Sheet Window

PFC Library User’s Guide 287

Add a DataWindow control

Where you are
Create a descendent window

> Add a DataWindow control
Enable report and print preview services
Run the application

Now you will create a DataWindow control using PFC’s u_dw DataWindow
user object.

1 Select and click the UserObj button in PainterBar1 (not the PowerBar).
or
Select Insert>Control>UserObject from the menu bar.

The Select User Object dialog box displays.

2 Select pfemain.pbl in the Application Libraries list box.
Select u_dw in the User Objects list box and click OK.
Click in the upper-left corner of the window in the Layout view.

PowerBuilder places a DataWindow control at the selected location. This
DataWindow control is a descendant of u_dw, with access to u_dw events,
functions, and instance variables.

3 Select the text dw_1 in the Name box in the Properties view.
Type dw_report in the Name box.
Select the HScrollBar check box.

You add a horizontal scroll bar to the DataWindow that will be visible at
runtime.

4 Click the ellipsis button next to the DataObject box.

The Select Object dialog box displays.

5 Select pfctutor.pbl in the Application Libraries list box.
Select d_sales_report in the DataWindows list box and click OK.

The DataWindow property sheet redisplays with the DataObject box filled
in.

Add a DataWindow control

288 PowerBuilder

6 Make the control almost as big as the window in the Layout view,
maximizing the Layout view if necessary:

7 Select File>Save from the menu bar.

Lesson 5 Build the Second Sheet Window

PFC Library User’s Guide 289

Enable report and print preview services

Where you are
Create a descendent window
Add a DataWindow control

> Enable report and print preview services
Run the application

Now you will add PowerScript code to call functions that enable the PFC
DataWindow report service and print preview service. You will also add code
that retrieves rows from the database.

1 Select dw_report from the first drop-down list in the Script view.
Select the Constructor event from the second drop-down list.
Type the following script for the Constructor event:

this.of_SetReport(TRUE)
this.of_SetPrintPreview(TRUE)
this.of_SetTransObject(SQLCA)
this.of_SetUpdateable(FALSE)

These lines enable the report and print preview services, set SQLCA as the
Transaction object and register the DataWindow as nonupdatable. In a
nonupdatable DataWindow, PFC disregards default CloseQuery
processing.

2 Add the following script after the lines you just typed:

IF this.of_Retrieve() = -1 THEN
SQLCA.of_Rollback()
MessageBox("Error","Retrieve error")

ELSE
SQLCA.of_Commit()

END IF

These lines call the u_dw of_Retrieve event for the DataWindow.
Precoded report service events and functions handle all other processing.

3 Select pfc_Retrieve from the second drop-down list in the Script view.

PowerBuilder compiles the script for the Constructor event.

Enable report and print preview services

290 PowerBuilder

4 Type this script for the pfc_Retrieve event:

Return this.Retrieve()

5 Select File>Save from the menu bar.

PowerBuilder compiles the script and saves the window.

6 Select File>Close from the menu bar.

The Window painter closes.

Lesson 5 Build the Second Sheet Window

PFC Library User’s Guide 291

Run the application

Where you are
Create a descendent window
Add a DataWindow control
Enable report and print preview services

> Run the application

Now you will run the completed PFC tutorial application.

1 Click the Run button in the PowerBar.

The application connects to the database and displays the PFC Tutorial
Frame window.

2 Select File>Open>Product Sales Report from the menu bar.

The w_product_report window displays:

3 Click the Print Preview button in the toolbar.
or
Select File>Print Preview from the menu bar.

Run the application

292 PowerBuilder

The print preview shows the printable area inside a blue box. You may
need to scroll or zoom the preview window to see the entire report.

4 Select View>Zoom from the menu bar.

The Zoom dialog box displays.

If the Zoom dialog box does not display
You must be in the Print Preview mode to display the Zoom dialog box.

5 Change the Zoom dialog box setting to display the entire report and
click OK.
Print the report if wanted.

6 Select File>Exit from the menu bar.

The application closes and the Window painter workspace displays.

7 Close the Window painter.

You have completed this tutorial. Before deploying a simple application
like the one you created here, you would probably want to add your own
Help file, edit the About box, and enable additional PFC services.

For more information on PFC functions and events, see the PFC Object
Reference.

Using the Online Books
All the PowerBuilder books are available in the Technical Library CD and
on the Sybase Web site at www.sybase.com.

PFC Library User’s Guide 293

A
aggregate relationship 11
ancestor level

contents 12, 15
interdependencies 20

ancestor override (tutorial example) 257
application manager

customizing descendant 237
gnv_app global variable 241
logon dialog box 32
services 31, 49
setting up 29
splash screen 31

Application object
creation 233
redirecting events from 241
using separate physical files 20

application services
application preference 53
DataWindow caching 50
debugging 52
error message 57
list 49
most recently used object 54
security 60
transaction registration 62

associative relationship 11
autorollback 44, 62
autoscroll, enabling 133
autoselect, enabling 133

B
base-10, converting to binary 104
binary, converting to base-10 104
bits, accessing 104

buffers
DataWindow caching service 50
DataWindow properties service 208

C
caching DataWindow objects, application service 50
calculator control 169
calendar control 174
class user objects, custom 5
components 15
composite DataWindow 80
conversion service 98
copy 131
custom class user objects 5
custom visual user objects 5, 129
cut 131

D
database

connecting 250
retrieving 137
security 224
updating 92

DataWindow caching, application service 50
DataWindow control

creating (tutorial) 272, 287
retrieving 137
SQL Spy 210
using u_dw 135

DataWindow object
accessing object information 65
caching 50

DataWindow Properties window 207

Index

Index

294 PowerBuilder

DataWindow services
accessing 63
base 64
DataWindow properties 76, 207, 275
DataWindow resize 85
drop-down DataWindow search 67
filter 67
find and replace 70
linkage 71
list 64
multitable update 74
print preview 75
query mode 77
reporting 78
required column 81
row management 82
row selection 84
sort 87
tutorial usage 275, 289

date/time service 99
debugging service

SQL Spy 210
usage 52

delegation
aggregate relationship 11
associative relationship 11

deployment
PBR files 229
PFC database tables 229
PFC dialog box Help 230
strategy 227

dialog box Help 230
drop-down DataWindow

refreshing 66
search service 67

drop-down list box, autoscroll 133

E
editing 131
encapsulation 7
error message service

e-mail notification 59
symbolic parameter replacement 60
usage 57

events
ancestor override (tutorial example) 257
comparison with functions 6
using 36

extended selection, row selection service 84
extending PFC

creating additional extension levels 20
Library Extender 226
using PFE to contain extensions 23

extension level
overview 12
sample scenario 14
strategy 20

F
file service 101
filter service 67
find and replace service 70
frame menu, tutorial example 255, 262
frame window

associating with a menu 264
menu (tutorial) 255
modifying 247
opening 252

functions
calling 35
comparison with events 6
overloading 8
overriding 8
overview 6

G
global variable, defining 241
gnv_app

defining 30
tutorial definition 241

Index

PFC Library User’s Guide 295

H
Help

dialog box Help 230
enabling, for an application 46

I
inclusional polymorphism 8
inheritance 7
INI file service 102
INI files

INI file service 102
window settings 93

L
libraries

adding to search path 29, 270
PFC 15, 235

Library Extender 226
linkage service 71
list service 114
ListView 141
logical unit of work service

usage 111
w_master pfc_Save process 195

logon dialog box 32, 242

M
m_dw pop-up menu 131
m_edit pop-up menu 131
m_lvs pop-up menu 131
m_master, inheriting from 256
m_oc pop-up menu 131
m_tvs pop-up menu 131
master/detail processing 71
MDI applications

building 33
frame menu (tutorial) 262
frame window (tutorial) 247
sheet management service 94
status bar service 95

menu services 95
menus

creating your own 202
extending 202
inheritance strategies 202
modifying 255
pop-up 131, 206
services overview 201
standard menu items 204

message logging 57, 211
message router

of_pfc_MessageRouter event 42
of_SendMessage function 42
overview 41
using 91

Message.StringParm (tutorial example) 259
metaclass service 111
MicroHelp, automatic update 134
Migration Assistant 226
most recently used object service 54
multirow selection, row selection service 84
multitable update service 74

N
n_cst_appmanager

defining gnv_app 241
setting up 29

n_cst_apppreference 53
n_cst_debug 52
n_cst_dwcache 50
n_cst_dwsrv 64
n_cst_dwsrv_dropdownsearch 67
n_cst_dwsrv_filter 67
n_cst_dwsrv_find 70
n_cst_dwsrv_linkage 71
n_cst_dwsrv_multitable 74
n_cst_dwsrv_printpreview

tutorial usage 289
usage 75

n_cst_dwsrv_property
tutorial usage 275
usage 76

n_cst_dwsrv_querymode 77

Index

296 PowerBuilder

n_cst_dwsrv_report
tutorial usage 289
usage 78

n_cst_dwsrv_reqcolumn 81
n_cst_dwsrv_resize 85
n_cst_dwsrv_rowmanager

tutorial usage 275
usage 82

n_cst_dwsrv_rowselection
tutorial usage 275
usage 84

n_cst_dwsrv_sort
tutorial usage 275
usage 87

n_cst_error 57
n_cst_luw

usage 111
w_master pfc_Save process 195

n_cst_mru, usage 54
n_cst_resize 96
n_cst_security 60
n_cst_tmgmultiple 126
n_cst_tmgsingle 126
n_cst_trregistration 62
n_cst_winsrv 92
n_cst_winsrv_preference 93
n_cst_winsrv_sheetmanager

usage 94
n_cst_winsrv_statusbar

usage 95
n_tmg 126
n_tr

autorollback 44, 62
creating an instance 44
initializing 44
registering a transaction 62
replacing default Transaction object 44, 244
usage 43

nilisnull property 81
numerical service 103

O
object administrator 19

object-oriented programming
delegation 11
encapsulation 7
inheritance 7
polymorphism 7
usage in PFC 8

of_SendMessage function
process diagram 42
tutorial example 259
using 91

online Help
dialog box Help 230
enabling for an application 46

operational polymorphism 8
overloading functions 8
overriding functions 8

P
paste 131
paste special 131
PBLs 15
PBR files 229
PFC

DLLs 227
libraries 15, 235
services 9

pfc_MessageRouter event
process diagram 42
using 91

pfc_Save process 195
PFCDLG.HLP 230
platform service 105
polymorphism 7
pop-up menus, list of 131
post-open processing 250
PowerBuilder, prerequisite concepts 4
preference service

application 53
window 93

pre-open processing 250
prerequisite concepts 4
print preview service

tutorial usage 289
usage 75

Index

PFC Library User’s Guide 297

progress bar control 183
Properties window 207

Q
querymode service 77

R
reference variables 5, 63
registry

window settings 93
replace service 70
reporting service

tutorial usage 289
usage 78

required column service 81
resize service

DataWindow 85
PFC 96

response windows 194
RichTextEdit 159
right mouse button support

disabling 132
pop-up menus 131

row management service
tutorial usage 275
usage 82

row selection service
tutorial usage 275
usage 84

S
SDI applications, building 34
security service

database 224
implementing security in an application 223
usage 60

security utility
administration utility 215
assigning to users and groups 221
overview 213

scanner 218
security database 224
specifying secured controls 220
users and groups 215

select all 131
selection service 106
self-updating objects

about 111
enabling 200

services, list of 9
sheet management service 94
sheet menu, tutorial example 265, 267
sheet windows

menu (tutorial) 255
opening 248
tutorial usage 271, 286

single-row selection, row selection service 84
sort service

tutorial usage 275
usage 87

splash screen 31, 252
splitbar control 182
SQL parsing service 108
SQL Spy utility 210
SQLCA, using n_tr 43, 244
standard class user objects 5
standard visual user objects 5, 129
status bar service 95
status flags 209
string-handling service 109
StringParm, using (tutorial example) 259

T
Tab control

resize service 96
usage 165

timing service 126
toolbars, controlling 92
transaction management 43
Transaction object

initializing 44
registration 62
using n_tr as 244

Index

298 PowerBuilder

transaction registration service 62
TreeView 146

U
u_calculator 169
u_calendar 174
u_ddlb

autoscroll 133
autoselect 133
editing functions 131
right-mouse button support 131

u_ddplb
autoscroll 133
autoselect 133
editing functions 131
right-mouse button support 131

u_dw
DataWindow services 63
editing functions 131
overview 135
retrieving rows 276, 278, 289
right-mouse button support 131
tutorial usage 272, 287
undelete 84

u_em
autoselect 133
editing functions 131
right-mouse button support 131

u_lvs
right-mouse button support 131
usage 141

u_mle
autoselect 133
editing functions 131
right-mouse button support 131

u_oc
editing functions 131
right-mouse button support 131

u_progressbar 183
u_rte

editing functions 131
right-mouse button support 131
usage 159

u_sle
autoselect 133
editing functions 131
right-mouse button support 131

u_st_splitbar 182
u_tab 165
u_tabpg 165
u_tvs

right-mouse button support 131
usage 146

undelete 84
undo 131
user objects

class 5
visual 5

V
visual user objects

custom 5, 129
standard 5, 129

W
w_logon dialog box, displaying 32, 242
w_product_report, creating (tutorial) 286
w_products, creating (tutorial) 271
w_sheet, inheriting from 271, 286
w_splash window 31, 252
window

post-open processing 250
pre-open processing 250
resize service 96

window services
base 92
list 90
preference 93
sheet management 94
status bar 95

windows
basic usage 192
enabling services 192
pfc_Save process 195
response 194

PFC Library User’s Guide 299

Z
zoom

absolute 75
relative 81

300 PowerBuilder

	PowerBuilder Foundation Class Library User’s Guide
	CHAPTER 1 About the PowerBuilder Foundation Class Library
	Understanding PFC
	Understanding PowerBuilder
	PowerBuilder libraries and objects
	Object-oriented programming

	How PFC uses object orientation
	How PFC uses the extension level
	The PFC components

	CHAPTER 2 Designing a Class Library
	Using PFC to design a class library
	Choosing an extension strategy
	Creating an intermediate extension level
	Using the existing PFC extension level

	Defining a new service

	CHAPTER 3 PFC Programming Basics
	Setting up the application manager
	Building applications
	Using attribute objects
	Using PFC constants
	The message router
	Transaction management with PFC
	Calling ancestor functions and events
	Adding online Help to an application
	Installing PFC upgrades

	CHAPTER 4 Using PFC Services
	Application services
	DataWindow caching service
	Debugging service
	Application preference service
	Most recently used object service
	Error message service
	Security service
	Transaction registration service

	DataWindow services
	DataWindow services ancestor
	Drop-down DataWindow search service
	Filter service
	Find and replace service
	Linkage service
	Multitable update service
	Print preview service
	DataWindow properties service
	Query mode service
	Reporting service
	Required column service
	Row management service
	Row selection service
	DataWindow resize service
	Sort service

	Window services
	Basic window services
	Preference service
	Sheet management service
	Status bar service

	Menu service
	Resize service
	Conversion service
	Date/Time service
	File service
	INI file service
	Numerical service
	Platform service
	Selection service
	SQL parsing service
	String-handling service
	Metaclass service
	Logical unit of work service
	Implementing self-updating objects

	List service
	Using a basic list
	Using a stack
	Using a queue
	Using a tree
	Creating a comparison object

	Timing service

	CHAPTER 5 Using PFC Visual Controls
	About PFC visual controls
	Using standard visual user objects
	Using basic functionality
	Cut, copy, paste, and other editing functions
	Using right-mouse button support
	Using autoscroll in drop-down lists
	Using autoselect
	Using selection inversion in list boxes
	Using the GetFocus event

	Using advanced functionality
	Using the u_dw DataWindow control
	Using the u_lvs ListView control
	Using the u_tvs TreeView control
	Using the u_rte RichTextEdit control
	Using the u_oc OLE control
	Using the u_tab Tab control and the u_tabpg user object

	Using custom visual user objects
	Using the calculator control
	Using the calendar control
	Using the splitbar control
	Using the progress bar control

	CHAPTER 6 Using PFC Windows and Menus
	Using PFC windows
	Window usage basics
	Using response windows
	Using the pfc_Save process

	Using menus with PFC
	Two menu inheritance strategies
	Extending PFC menus
	Creating your own menus
	Using standard menu items
	Using pop-up menus

	CHAPTER 7 PFC Utilities
	DataWindow Properties window
	SQL Spy
	Security
	Defining users and groups
	Running the security scanner
	Defining security for users and groups
	Implementing security in an application
	Maintaining the security database

	Library Extender
	Migration Assistant

	CHAPTER 8 Deploying a PFC Application
	Choosing a deployment strategy
	Using PBR files
	Deploying database tables
	Deploying PFC dialog box Help

	Index

