

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-1

Application Tracing in Adaptive Server Enterprise (ASE) 15

Mehul Wagle and Nitin Verma
Server Performance Engineering and Development Group

 Sybase, Inc.

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-2

Table of contents

1. Motivation .. 3

2. Feature Overview .. 3

3. Command Interface ... 4

3.1 How to enable tracing ... 4

3.2 How to disable tracing .. 4

4. Scope of the feature.. 4

4.1 How to trace SQL Text .. 6

5. Use Cases .. 7

5.1 How to trace a specific client session .. 7

5.2 How to trace sessions of a specific login... 8

5.3 How to find which sessions are being traced .. 10

5.4 How to rebind to an existing trace .. 10

5.5 How to create trace output file at various paths .. 11

6. Restrictions/Limitations.. 11

7. Conclusion ... 12

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-3

1. Motivation
Sybase ASE 15.0.1 already has several tracing options that customers can enable to
collect useful diagnostic information. This information includes query-level details
like execution plan, i/o cost, etc. For example, the “set showplan on” command will
display the plan for a SQL query just before executing it. However customers can
only enable diagnostics if they have access to their SQL client sessions connected to
the server. Hence tracing a running client application will require stopping the
application, modifying its code to include the relevant diagnostic SQL commands at
appropriate places, and finally restarting it. Restarting a client application is not
feasible in production environments, and modifying application code may not even
be possible if it comes pre-packaged. Often customers face situations where a specific
application is running significantly slow or not as per expectations. The cause is
unknown since database applications behave like a black box. Even someone as
powerful and equipped as a database administrator has little access to server-side
tasks initiated by an application during execution. Keeping this in mind, it would be
worthwhile if database users could trace their server-side tasks to monitor the health
of their application or if database administrators could do the same for all running
user tasks so as to monitor the health of the server.

 With this in hindsight, the upcoming flagship release of Sybase Adaptive Server
Enterprise (ASE) 15.0.2, introduces the “Application Tracing” feature. The primary
motivation behind constructing this server-side framework is to capture execution-
level traces of the server for any given client session in order to help debug
performance bottlenecks. This white paper essentially highlights the significant
elements of this new feature set.

2. Feature Overview
The “Application Tracing” feature provides database users, having special privileges,
the capability to turn on the commonly used server diagnostic options (refer section
4 for list of supported options) for a running client session, and capture the trace
output into a text file. Just like the server log file helps administrators to debug the
server-wide execution, an application trace file helps individual users to monitor
session-specific execution. All that a user needs to know for using this feature is the
SPID (Server Process ID) of the session to be traced. The SPID is a unique number
assigned by the ASE database server to any task running on it, just like PID of a
process in UNIX. There exists a stored procedure in ASE named “sp_who”, which
reports all tasks running on the server at that moment. Once the SPID for the session
to be traced is determined, the user just needs to issue the command:

set tracefile “<file-path>” for <spid>

Thereafter the traceable diagnostic options, when explicitly enabled by the user (e.g.
set statistics io on), will take effect only on the target session and the
corresponding output will be redirected to the specified file. The diagnostic output
will continue to be logged into the trace file as long as tracing is active for that
session.

In addition to being able to trace sessions by their SPID, one can also trace
sessions of a particular login. For this the database administrator must create a
“login trigger” (simply a SQL stored procedure executed at login time) for the target
user login and provide the necessary permission to allow that login to trace itself
(refer section 5.2 to understand how this is done). Once a login trigger is installed for

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-4

the desired login, it will be executed every time a user logs in to the server using that
login. Subsequently that entire session will be traced until the user logs out or
explicitly disables tracing.

3. Command Interface

3.1 How to enable tracing

� for own session:
Syntax: set tracefile “<file-path>”

Note: Double quotes are compulsory for file path; files with relative path are
created under $SYBASE.

� for another session:
Syntax: set tracefile “<file-path>” for <spid>

Note: Double quotes are compulsory for file path; files with relative path are
created under $SYBASE.

� for rebinding with tracing already in progress on another session (used in

case the tracer session quits):
Syntax: set tracefile for <spid>

� for target session’s lifetime irrespective of its state of execution:

Syntax:

 set tracefile “<file-path>” [for <spid>]

 set export_options on

 set <option-name> on/off

Note: This interface is needed in ASE because ‘set’ options, enabled for a session
while it is executing a stored procedure, are reset back once the procedure quits.

3.2 How to disable tracing
� enabled by the current session (either for itself or for another session):

Syntax: set tracefile off

� enabled by another session (used in case that session quits without

turning off the tracing):
Syntax: set tracefile off for <spid>

4. Scope of the feature
The ‘set’ commands in ASE 15.0.2 whose output can be traced under application
tracing context are:

1. set show_sqltext <on/off> (refer section 4.1)
2. set showplan <on/off>
3. set statistics io <on/off>
4. set statistics time <on/off>
5. set statistics plancost <on/off>

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-5

6. All ‘set option’ subcommands. To enumerate a few:
o set option show <normal/brief/long/on/off>

� show diagnostics from all modules; each module will thus be set in
the off/brief/normal/long level that is coherent both between
modules and with the desired global brief/normal/long level of
information

o set option show_lop <normal/brief/long/on/off>

� show logical operators used
o set option show_managers <normal/brief/long/on/off>

� show data structure managers used
o set option show_log_props <normal/brief/long/on/off>

� show logical properties used
o set option show_parallel <normal/brief/long/on/off>

� show parallel query optimization
o set option show_histograms <normal/brief/long/on/off>

� show histogram processing
o set option show_abstract_plan

<normal/brief/long/on/off>

� show abstract plan details
o set option show_search_engine

<normal/brief/long/on/off>

� show search_engine details
o set option show_counters <normal/brief/long/on/off>

� show optimization counters
o set option show_best_plan <normal/brief/long/on/off>

� show best plan details
o set option show_code_gen <normal/brief/long/on/off>

� show code generation details
o set option show_pio_costing <normal/brief/long/on/off>

� show physical io estimates
o set option show_lio_costing <normal/brief/long/on/off>

� show logical io estimates
o set option show_elimination <normal/brief/long/on/off>

� show partition elimination

Below are some ‘set’ options whose output is not captured by application tracing.
These commands impact query results or query plan.

1. set rowcount <value>
2. set forceplan <on/off>
3. set plan optgoal <allrows_mix/allrows_dss>

The output of all dbcc traces (dbcc traceon(<flag>)) goes to the trace file,
when enabled under application tracing context.
e.g. dbcc traceon(100) will display a parse tree for each command.

 NOTE: The traced output will always go to the specified trace file and does
not require traceflags 3604 or 3605 to be ON. In case these traceflags are turned on,
they do not affect the trace output format in any way.

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-6

4.1 How to trace SQL Text
Sybase ASE 15.0.2 introduces a new ‘set’ command that can be used to print SQL
Text for ad-hoc queries, stored procedures, cursors and dynamic prepared
statements. This command is very helpful in debugging and tracing applications and
should always be used in conjunction with ‘set tracefile’ command.

Syntax: set show_sqltext on/off

In application tracing context, the presence of SQL Text in the beginning of each

tracing output is much needed, mainly when we trace some other session. Without
SQL Text, it would be quite hard to correlate the trace output (showplan, statistics io,
etc.) with its corresponding SQL or command.

Additionally this command also prints a timestamp before each SQL Text that it
outputs. It prints the current date and time up to a granularity of 10 milliseconds.
This fingerprint-like information is quite useful when digging into the command
sequence issued by a client application. It especially helps in computing delays
between two points of interest during application execution and also allows mapping
of application-level events from trace file with server-level events from server log.

 NOTE: The “set show_sqltext” command can also be used outside the ‘set
tracefile’ context. In that case, this command will only work for the current session.

Once enabled, this interface prints the following:
� In case of an ad-hoc query, prints SQL statement text preceded by timestamp.

o For Example:
“select count(*) from sysobjects” prints:

2007/06/20 22:51:35.46
SQL Text: select count(*) from sysobjects

� In case of a stored procedure, prints the enclosing procedure name and line

number for SQL statements and the SQL text itself for exec-immediate
statements. The timestamp is printed only once at the beginning.

o For Example:
“sp_who” prints:

2007/06/20 22:44:47.67
SQL Text: sp_who
Sproc: sp_who, Line: 0
Sproc: sp_who, Line: 20
. . .

Sproc: sp_autoformat, Line: 163
. . .
Sproc: sp_autoformat, Line: 211
. . .
SQL Text: UPDATE #colinfo_af SET maxlength=(SELECT
isnull(max(char_length(status)),1) FROM #who1result), autoformat = 1,
mbyte = case when usertype in (24, 25, 34, 35) then 1 else 0 end WHERE
colname='status'
. . .
Sproc: sp_who, Line: 67
Sproc: sp_who, Line: 69

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-7

� In case of dynamic prepared statements, prints the statement which creates a

light weight stored procedure during prepare phase and prints the prepared
statement name with statement text during execution. Timestamp is preceded
before the SQL text in both cases.

o For Example:
“EXEC SQL PREPARE select_statement FROM :m_sqlstring;”

 prints:
2007/01/10 05:21:12.39
SQL Text: create proc select_statement as SELECT title FROM titles
where title_id = 'TC4203'

“EXEC SQL EXECUTE select_statement INTO :m_title;”

 prints:
2007/01/10 05:21:22.33
Prepared Statement: select_statement, SQL Text: SELECT title FROM
titles where title_id = 'TC4203'

� In case of cursors, prints timestamp followed by cursor name, operation (and

statement text only for DECLARE and OPEN operations).
o For Example:
2007/01/10 22:44:54.78
Cursor: typelist, OPEN, SQL Text: SELECT DISTINCT type FROM titles
2007/01/10 22:45:52.96
Cursor: typelist, FETCH
2007/01/10 22:46:27.12
Cursor: typelist, CLOSE

5. Use Cases
Here are some of the use cases showcasing the usability of the feature.

5.1 How to trace a specific client session
This is useful for tracing already running applications connected to the server. All
that one needs to know is the SPID of the client session to trace.

spid # 10
(tracer session)

spid # 11
(traced session)

Action taken

set tracefile

"C:\Trace\trace11" for

11

go

Enable tracing of session
#11.

set export_options on

go
Any settings made hereon
will be alive for entire
lifetime of the traced
session.

set show_sqltext on

go
Trace SQL text.

set showplan on

go

A TPC-E driver tool
starting client sessions
executing SQL stored

procedures and
queries.

Trace Query Plan.

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-8

TPC-E 'trade_result'

transaction in execution.

The Query Text and Plan
will go into the file
“C:\Trace\trace11”.

set tracefile off

go
 Disable tracing of session

#11.

 TPC-E 'trade_result'
transaction in execution.

The o/p will no longer be
logged.

5.2 How to trace sessions of a specific login
This might be helpful in the following situations:

1. A client application connects to the server via several SQL sessions, identical in

processing, and user is interested in debugging any one session. Tracing by login
would help in characterizing the behavior of the application in general, since the
sessions initiated would have more or less similar workloads (e.g. TPC-C client).

2. In an enterprise-wide ASE server installation, the database administrator may
notice that certain logins are causing either stalls or hangs during server
execution. In such situations, the administrator may want to enable tracing for
the problematic logins to check for unexpected or suspect activity.

3. A user may want to trace his client session in its entirety (from start till end).

spid # 10 Action taken

Login as 'SA/SSO'. Connect to the server as
administrator.

create procedure ltrigg as

 declare @filepath varchar(100)

 select @filepath="trace_for_spid" +

convert(varchar(10),@@spid) + "_at_" +

convert(varchar(10),getdate(),5) + "_" +

convert(varchar(10),getdate(),8) + ".txt"

 set tracefile @filepath

 set export_options on

 set show_sqltext on

 set showplan on

go

Define a stored proc to
enable tracing whenever a
session executes it.

<= Generate unique trace file
path from current spid, date.

create role trace_role

grant set tracing to trace_role

grant execute on ltrigg to trace_role

go

Define a special role with
perms to do tracing and to
execute the login trigger.

declare @login varchar(10)

select @login="mwagle"

exec sp_role "grant", trace_role, @login

exec sp_modifylogin @login, "add default

role", "trace_role"

exec sp_modifylogin @login, "login

script", ltrigg

go

Grant the special role to the
login of interest to be traced
and enable the role by
default. Finally install the
defined stored proc as login
trigger for the target login.

quit Quit the admin session.

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-9

A TPC-C driver tool starting 50 client sessions of
TPC-C workload with username ‘@login’ above.

Multiple client sessions
created with same login.

Each of the 50 clients will fire the typical set and
mix of stored procedures and queries in
conformance with the TPC Benchmark™C (TPC-C)
specification.

The Query Text and Plan for
the 50 clients automatically
goes into separate trace files
under $SYBASE.

Sample trace output:

(trace_for_spid32_at_25-06-07_22:38:04.txt)
2007/06/25 22:38:04.22

SQL Text: use tpcc

Sproc: tc_startup, Line: 5

...

Sproc: neworder_local, Line: 0

QUERY PLAN FOR STATEMENT 1 (at line 0).

 STEP 1

 The type of query is DECLARE.

...

Sproc: neworder_local, Line: 55

QUERY PLAN FOR STATEMENT 3 (at line 55).

 STEP 1

 The type of query is UPDATE.

 2 operator(s) under root

 |ROOT:EMIT Operator

 |

 | |UPDATE Operator

 | | The update mode is direct.

 | |

 | | |SCAN Operator

 | | | FROM TABLE

 | | | district

 | | | Using Clustered Index.

 | | | Index : d_clu

 | | | Forward Scan.

 | | | Positioning by key.

 | | | Keys are:

 | | | d_w_id ASC

 | | | d_id ASC

 | | | Using I/O Size 4 Kbytes for data pages.

 | | | With LRU Buffer Replacement Strategy for data

pages.

 | |

 | | TO TABLE

 | | district

 | | Using I/O Size 4 Kbytes for data pages.

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-10

5.3 How to find which sessions are being traced
The stored procedure sp_helpapptrace displays server-wide information about all
open tracing sessions. This procedure prints the SPIDs of all sessions being traced,
the SPIDs of sessions tracing them and also name of the trace file.

Syntax: sp_helpapptrace

Columns in the output:

o traced_spid: SPID of the session being traced.

o tracer_spid: SPID of the session tracing the <traced_spid>. In case
the tracer session has exited, it prints ‘exited’ in place of the SPID.

o trace_file: The full path of the file capturing the trace output for the

<traced_spid>.

Only SA/SSO is allowed to run this stored proc. This procedure is quite useful at the
time of trace rebinding method, which is discussed in the next section.

5.4 How to rebind to an existing trace
When a session starts tracing another session and quits without disabling the tracing,
then a new session is allowed to rebind with the earlier tracing context using the
rebind facility. This allows users to enable tracing and quit the tracer session. Later
they can rebind to the traced session and enable/disable ‘set’ options. Only SA/SSO
is allowed to use this facility.

spid # 10 spid # 11 spid # 12 Action taken

set tracefile

"/tmp/trace11"

for 11

go

 Enable tracing of
session #11.

set show_sqltext

on

go

 Trace SQL text.

 sp_myproc

go

 The sproc text
will go into the
file
“/tmp/trace11”.

quit Quit gracefully or
abnormally.

 sp_helpapptrace

go

traced_spid

tracer_spid

trace_file

----------- -------

---- ----------

11 exited

/tmp/trace11

Session #12 can
query which
sessions are being
traced.

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-11

 set tracefile for

11

go

Rebind to tracing
of session # 11.

 set show_sqltext

off

go

Stop printing the
SQL text.

 set tracefile off

go
Disable tracing of
session #11.

 sp_myproc

go
 The o/p will no

longer be logged.

5.5 How to create trace output file at various paths
The location of the trace output depends on the path specified as parameter to the
“set tracefile” command.

Command Action taken

set tracefile “myfile”

go
The file ‘myfile’ will be created in $SYBASE/

set tracefile “mydir/myfile”

go
The file ‘myfile’ will be created in
$SYBASE/mydir/

set tracefile “/tmp/myfile”

go
The file ‘myfile’ will be created as
/tmp/myfile

6. Restrictions/Limitations

1. Only ‘SA/SSO’ (a user with administrative privileges) or users with “set
tracing” permission granted will be allowed to use application tracing. Users
with “set tracing” permission will only be allowed to trace their own sessions.
They will therefore not be allowed to even query tracing information (using
sp_helpapptrace) unlike ‘SA/SSO’.

2. SET TRACEFILE interface doesn’t open an existing file. This protects a
malicious user from corrupting the existing critical files like database device
files or $SYBASE files present on public file systems like the NFS.

3. Application tracing is allowed only for user tasks and not for system tasks. So
an attempt to attach with some system process (e.g. housekeeper) via "set
tracefile <file-path> for <system-spid>" will yield an error.

4. One cannot trace more than one session at a time from a given session.
5. One cannot trace the same session from multiple sessions.
6. The file storing the trace output will be closed either when the session being

traced quits, or when tracing itself is disabled.

7. While writing the trace output, in case ASE runs out of file space it will close
the trace file and turn off the tracing.

Application Tracing in Adaptive Server


 Enterprise (ASE) 15 P-12

7. Conclusion
As part of Sybase’s commitment to provide features that add real value to its
customers in mission critical environments, Sybase ASE 15.0.2 provides the
“Application Tracing” feature. The new feature enables customers to debug their pre-
packaged applications and client sessions connected to the ASE database server. The
primary goal of the feature is to provide, both users and administrators alike, the
capability to x-ray the server execution without interrupting any client-side activities.
Users can now attempt to inspect slow or unexpected behavior experienced during
application execution. DBAs can do the same across all executing applications.
Upgrading from one version to another becomes much easier for DBAs as they can
now easily pinpoint any issues with the help of these tracing options.

About Sybase, Inc.
Sybase is the largest global enterprise software company exclusively focused on managing and
mobilizing information from the data center to the point of action. Sybase provides open, cross-
platform solutions that securely deliver information anytime, anywhere, enabling customers to
create an information edge. The world’s most critical data in commerce, communications,
finance, government and healthcare runs on Sybase. For more information, visit the Sybase Web
site: http://www.sybase.com.

http://www.sybase.com/

